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Abstract

Neural networks, such as multi-layer perceptron (MLP) networks

which converge slowly, have been applied for tra�c and congestion

control in ATM networks. In this paper, we present a Connection Ad-

mission Control (CAC) scheme using modular and hierarchical neural

networks for predicting the resulting cell loss rate (CLR) when calls

are accepted. The fast learning and accurate predictions obtained us-

ing this architecture is shown to produce near zero CLR while main-

taining a high throughput.

Keywords: ATM Congestion and Tra�c Control, Call Admission

Control

1 Introduction

Asynchronous Transfer Mode (ATM) [6] is a high-speed packet switching
technology for the broadband integrated services digital network (B-ISDN),
in which various kinds of communication services such as voice, video and
data are transferred over high-speed links. This technology is gaining ac-
ceptance as the backbone high-speed network of the future, and as a high
bandwidth link to homes and the desktop, e.g. for interactive multime-
dia services. It supports di�erent service classes, such as Constant Bit



Rate (CBR), Variable Bit Rate (VBR), Unspeci�ed Bit Rate (UBR) and
Available Bit Rate (ABR). ATM tra�c management or congestion control
methods [1] are needed to ensure that quality of service (QoS) parameters
such as cell delay and cell loss probability are within the agreed limits.

2 Connection Admission Control (CAC)

When a user wishes to establish a connection with another user, his termi-
nal sends a connection set-up request to the Connection Admission Control
(CAC) controller, during which it declares information such as the required
QoS and its own tra�c parameters, which describe the cell generation char-
acteristics of the source, e.g. Peak Cell Rate (PCR), Average Cell Rate
(ACR), burstiness and peak duration. The controller forms an estimate of
the resulting network situation if the connection is accepted, and proceeds
to accept the connection only if this estimate indicates that the QoS re-
quirements of the new and existing users, especially those using the CBR
and VBR service classes, will not be violated.

There is usually a di�erence between the declared and actual tra�c
parameters, making QoS estimation through analytical methods di�cult.
The number of connections can be large, thus compounding the estimation
error in each connection. Neural network approaches rely on the actual
observed values of various quantities of interest to form a mapping between
di�erent data sets.

3 Neural Networks

In the area of high-speed networking, neural networks have been applied

in Connection Admission Control (CAC) [3], ow control and routing [5],
ATM switch control [2] and bandwidth prediction for variable bit rate video.

The basic approach for prediction using neural networks is to construct
a mapping between current and future values. To implement CAC, the

neural network is trained by presenting input patterns which reect the
current bu�er status - this can consist of current and previous cell arrival
rates (CAR). The required output is an estimate of QoS in the future,
commonly expressed in terms of average cell delay or cell loss rate (CLR).
In our experiments, the average of CLR values monitored at several future
time-steps, is used as the target value.



4 Modular and Hierarchical Neural Networks

Although single or monolithic function approximators, such as MLP net-
works, are able to model most functions, an alternative, especially when
complex functions need to be modelled, is to use multiple neural networks.
This method involves the construction of several di�erent neural networks
and combining them to get improved prediction accuracy. In addition, faster
learning of the target function can also be achieved.

A severe drawback of MLP networks is that they require many train-
ing cycles before the required mapping function is learnt. In a CAC task
performed using MLP networks, Hiramatsu [3] presented results which in-
volve timescales of between 2,000 to 10,000 seconds. His system achieves
the target CLR of 10�4 in \a few thousand seconds".
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Figure 1: A two-level Hierarchical Mixtures of Experts architecture.

4.1 Hierarchical Mixtures of Experts (HME)

The Hierarchical Mixtures of Experts (HME) [4] is an architecture (an ex-
ample is shown in Figure 1) which is based on the principle of divide-and-
conquer in which a large and di�cult function approximation problem is
broken into several smaller and easier-to-solve sub-problems. This involves
dividing the input space into a nested set of regions and �tting surfaces to



the data that fall in these regions. A separate function-approximator or `ex-
pert' network is assigned through competition to each of these regions. Each
expert network may itself be composed of competing sub-experts. Details
such as the training procedure will be described in the full paper.

In this paper, the HME is used for predicting the average cell loss rate
(CLR) that would arise when new call set-up requests are accepted. These
predictions form the basis of the proposed ATM Connection Admission
Controller.

5 HME-based Connection Admission Control

The HME architecture is integrated into the CAC algorithm shown in Fig-
ure 2 - its role is to predict the average cell loss rate (CLR), when calls are
accepted, from an input pattern made up of the current and previous val-
ues of the cell arrival rate at the Broadband Terminal Equipment (BTE).
Learning takes place in real-time, i.e. control decisions are based on the
output of the HME, these control actions a�ect the subsequent input pat-
terns and target values, which in turn a�ect future HME predictions and
control decisions etc. However, note that the HME is trained only after an
ACCEPT decision to ensure that a consistent mapping is formed. Once the
prediction of the average CLR J(t) is available, the CAC policy is straight-
forward: accept new calls in the next time interval �t if J(t) is less than
the target CLR, and reject them otherwise.

6 Experimental Details

6.1 Experiments

The following experiments using four di�erent CAC schemes were carried
out:

Admit all : This the \no CAC" case. All arriving calls are accepted by
the BTE.

Simple : A simple control policy, in which a call is accepted if the BTE
output bu�er is less than 90% full when the call arrives, is imple-
mented.

MLP : The MLP-based algorithm proposed by Hiramatsu [3] is imple-
mented.

HME : The HME-based CAC scheme described in Section 5 which uses
predictions of average CLR from a 3-level HME network with eight
expert networks is used.



All four CAC schemes observe the same call arrival pattern, i.e. calls have
exponentially distributed inter-arrival times with a mean of 10ms.

CAC Scheme No. of cells received No. of cells
at Destination discarded/lost

Admit all 3,186,150 77,942
Simple 3,107,786 10,302
MLP (� = 0:01) 2,838,130 69,109
MLP (� = 0:05) 1,859,974 16,105
HME 3,023,512 669

Table 1: Throughput and cell loss results at the end of 10s of simulation
time.

7 Results

The HME-based CAC approach is able to achieve near zero CLR throughout
the 10s simulation period, while maintaining high throughput, i.e. just a
little lower than the `admit all' and `simple' CAC schemes - see Table 1 and
Figure 3(d). The number of cells discarded is signi�cantly lower than the
other schemes.

The ACCEPT/REJECT graph shows a high degree of switching which
indicates that the HME-based CAC scheme can react quickly to di�erent
tra�c situations. Calls are not rejected unnecessarily, but enough calls are
rejected to keep CLR low.

The good performance of the HME-based scheme can be largely at-
tributed to its ability to predict the average CLR accurately and quickly,
which is a direct consequence of the modular and hierarchical nature of the
HME.

8 Conclusion

An ATM Connection Admission Control scheme using the modular and hi-
erarchical HME architecture has been proposed in this paper which achieves

near zero cell loss rate while maintaining high throughput in an ATM net-
work. It is shown to be superior to the method described in [3], which uses
an MLP network to perform classi�cation, in terms of both cell loss rate and
throughput. We believe that the main reason for the good performance of



the HME-based CAC scheme is that the HME reacts quickly and accurately
to new tra�c patterns.
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1. Start of control cycle. Set t = 0.
2. Get cell arrival rate p(t) from multiplexer.

(obtained by counting number of cells arriving the last time interval
�t)

3. Get cell loss rate l(t) from multiplexer.
(obtained by counting number of cells lost when output bu�er of
BTE multiplexer is full, divided by total number of cells arriving,
in the last time interval �t)

4. If t � k� 1, form new cell arrival pattern P (t) (k is the size of the
cell arrival pattern):

P (t) = [p(t); p(t� 1); :::; p(t� k + 1)]

5. Pass P (t) to HME and ask for J(t), which is the prediction of
average CLR in the next averaging period T ��t (note: T � 1).

6. Make control decision: (Lt is the target CLR)
if J(t) < Lt, set r(t) to 1 and ACCEPT all set-up requests in the
next �t

if J(t) � Lt, set r(t) to 0 and REJECT all set-up requests in the
next �t

7. Save P (t) - the T + 1 most recent P (t) values need to be saved.
This can be implemented e�ciently by saving p(t) at each time
step in a bu�er of size k+T , e.g. P (t�T ) can be formed from the
oldest k values in this bu�er.
l(t) is saved in another bu�er of size T - every value in this bu�er
is used to form the target value in Step 8.

8. If t � k + T � 1 AND r(t � T ) = 1, i.e. ACCEPT decision was
made T intervals ago, train HME with the following input-output
pair:
Input pattern: P (t� T )
Target value: y(t) = compand([avrg(l)](t� T )), where

[avrg(l)](t� T ) =
l(t+1�T )+:::+l(t)

T

and

compand(x) = log(2+�x)

log(2+�)
[� = 106]

else do not train HME
9. Repeat the control cycle: set t t+ 1 and go to Step 2.

Figure 2: The algorithm for CAC using the HME. Note: t and T are treated
as the number of intervals �t.
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Figure 3: The average CLR achieved and the ACCEPT/REJECT deci-
sions throughout the simulation period of 10s, using the four di�erent CAC
schemes: (a) Admit all. (b) Simple. (c) MLP (� = 0:05). (d) HME. Note:
The number on the horizontal axis denotes the number of 10ms intervals
which has elapsed.


