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Abstract: In cellular networks, QoS degradation or forced termination may occur when there are 
insufficient resources to accommodate handoff requests. One solution is to predict the trajectory of mobile 
terminals so as to perform resource reservations in advance. With the vision that future mobile devices are 
likely equipped with reasonably accurate positioning capability, we investigate how this new feature may be 
used for mobility predictions. We propose a mobility prediction technique that incorporates road topology 
information, and describe its use for dynamic resource reservation. Simulation results are presented to 
demonstrate the improvement in reservation efficiency compared with several other schemes.  
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1. Introduction 
In recent years, there has been a rapid increase in wireless network deployment and mobile device market 
penetration. With vigorous research that promises higher data rates, future wireless networks will likely 
become an integral part of the global communication infrastructure. Ultimately, wireless users will demand 
the same reliable service as of today’s wireline telecommunications and data networks. However, there are 
some unique problems in cellular networks that challenge their service reliability. In addition to problems 
introduced by fading, user mobility places stringent requirements on network resources. Whenever an active 
mobile terminal (MT) moves from one cell to another, the call needs to be handed off to the new base 
station (BS), and network resources must be reallocated. Resource demands could fluctuate abruptly due to 
the movement of high data rate users. Quality of Service (QoS) degradation or even forced termination may 
occur when there are insufficient resources to accommodate these handoffs. 
 
If the system has prior knowledge of the exact trajectory of every MT, it could take appropriate steps to 
reserve resources, so that QoS may be guaranteed during the MT’s connection lifetime [1]. However, such 
an ideal scenario is very unlikely to occur in real life. Instead, much of the work on resource reservation has 
adopted a predictive approach. For example, Liu et al. [1] uses pattern matching techniques and a self-
adaptive extended Kalman filter for next-cell prediction based on cell sequence observations, signal strength 
measurements, and cell geometry assumptions. In [2], Levine et al. propose the concept of a shadow cluster 
- a set of BSs to which a MT is likely to attach in the near future. The scheme estimates the probability of 
each MT being in any cell within the shadow cluster for future time intervals, based on knowledge about 
individual MT's dynamics and call holding patterns. 
 
In the United States, the FCC recently mandates that cellular-service providers must be able to pinpoint a 
wireless emergency call's originating location to within 125 m. This spurs intensive research in mobile-
tracking techniques. One promising approach is the integration of a global positioning system (GPS) 
receiver in each MT. According to [3], it is very reasonable to expect assisted GPS positioning methods to 
yield an accuracy of under 20 m during 67 percent of the time. During 2003-2009, a new batch of GPS 
satellites will be launched to include two additional civilian carrier frequencies that could potentially yield 
positioning accuracy within 1 m for civilian users, even without the use of ground-based augmentation 



system [4]. As more breakthroughs in positioning techniques take place, fuelled by the strong interest in 
location-based services from the industry, MTs are likely equipped with reasonably accurate location-
tracking capability in the near future. The time is thus ripe for active research into how such inherent 
tracking capability may be harnessed to bring about a leap in wireless network services. 
 
One exciting research area in which mobile positioning is extremely valuable is mobility prediction. The use 
of real-time positioning information for mobility prediction could potentially give rise to better accuracy 
and greater adaptability to time-varying conditions than previous methods. The availability of a practical 
and accurate mobility prediction technique could open the door to many applications such as resource 
reservation, location management, location-based services, and others that might have yet to be identified. 
While there has been previous work that attempts to perform mobility prediction based on mobile 
positioning [1][5][6], none of the work has addressed the fact that the cell boundary is normally fuzzy and 
irregularly shaped due to terrain characteristics and the existence of obstacles that interfere with radio wave 
propagation. Instead, either hexagonal or circular cell boundaries have been assumed for simplicity.  
 
Our research seeks to develop mobility prediction techniques that utilize real-time mobile positioning 
information without the need for any cell geometry assumption. While the positioning accuracy of current 
commercially available GPS-based MTs is still poor, our work is built upon the assumption that future MTs 
could achieve much better accuracy than today (say < 10 m). In [7], we have developed a decentralized 
prediction scheme, in which individual MTs equipped with positioning capability shall perform mobility 
predictions based on approximated cell boundary data that were downloaded from the serving BS. The 
approximated cell boundary is represented as a series of points around the BS; these points are computed 
based on the previous handoff locations reported by other MTs. In that scheme, road topology information 
has not been incorporated. Since MTs that are carried in vehicles would encounter more frequent handoffs, 
they are the ones that would benefit most from mobility predictions, and are therefore the main focus of our 
work. Because vehicles travel on roads, the incorporation of road topology information into the prediction 
algorithm could potentially yield better accuracy. In this article, we consider a centralized approach, in 
which each BS shall perform mobility predictions for individual active MTs within its coverage area. Since 
a BS has more computational and storage resources than a MT does, we can afford to incorporate road 
information into our prediction scheme for better accuracy. 
 
The remaining of this article is organized as follows. Section 2 describes the mobility prediction technique 
that we have developed. In Section 3, we describe the application of the proposed prediction technique for 
wireless resource reservation with the objective of handoff prioritization. Section 4 describes the 
simulations that have been carried out for performance evaluation. Finally, we give our conclusions in 
Section 5. 
 
2. Road Topology Based (RTB) Mobility Prediction Technique 
In our proposed technique, we require the serving BS to receive updated information about each active 
MT’s position at regular time intervals (e.g. 1 s). This will consume several bytes per second of wireless 
bandwidth for each MT, which might be negligible for future wireless services. In order to incorporate road 
information into the mobility predictions, each BS needs to maintain a database of the roads within its 
coverage area. We shall treat the road between two neighboring junctions as a road segment, and identify 
each segment using a junction pair (J1, J2), where a junction can be interpreted as the intersection of roads, 
e.g. T-junction or cross-junction. The approximate coordinates of each junction pair are to be stored in the 
database. Since a road segment may contain bends, it can be broken down further into piecewise-linear line 
segments. The coordinates defining these line segments within each road segment are also recorded. All the 
above coordinates could be easily extracted from existing digital maps previously designed for GPS-based 



navigational devices. Infrequent updates to these maps are foreseen because new roads are not constructed 
very often, while existing road layouts are seldom modified.  
 
The database also stores some important information about each road segment. Since two-way roads would 
probably have different characteristics for each direction, the database shall store information corresponding 
to opposite directions separately. Information stored in the database includes the average time taken to 
transit the segment, the neighboring segments at each junction, and the corresponding probability that a MT 
traveling along the segment would select each of these neighboring segments as its next segment. These 
transition probabilities could be automatically computed from the previous paths of other MTs. The 
database will be updated periodically every Tdatabase since many of its elements are dependent on current 
traffic conditions. 
 
In reality, the transition probabilities between road segments would probably vary with time and traffic 
conditions. For stochastic processes whose statistics vary slowly with time, it is often appropriate to treat the 
problem as a succession of stationary problems. We propose to model the transition between road segments 
as a second-order Markov process, and we assume that it is stationary between database update instances so 
as to simplify the computations. Based on this model, the conditional distribution of a MT choosing a 
neighboring segment given all its past segments is assumed to be dependent only on the current segment 
and the immediate prior segment. Using the road topology shown in Fig. 1 as an illustration, consider two 
MTs (MT1 and MT2) that are currently traveling from junction B towards junction E. MT1 came from 
segment CB, while MT2 came from segment AB. Based on the assumed model, the conditional probability 
of MT1 going to segment EF will be computed differently from that of MT2.  
 
If previous handoffs have occurred along a road segment, the probability of a handoff occurring in that 
segment is computed from previous data observed. The handoff probability, the target handoff cell, as well 
as the average time and position at which handoffs occur after entering the segment, are recorded. We shall 
refer to a segment that has experienced previous handoffs as a “handoff-probable segment” (HPS). An 
assumption made here is that MTs traveling along the same road segment in the same direction as previous 
MTs that have encountered handoffs are likely to encounter handoffs themselves.  
 
Using the model described above, we could determine via chain rule the conditional probabilities of 
reaching and handing off at each of the HPSs from segments that are several hops away. We could also 
estimate the average time required to reach them, using current position and speed information, as well as 
previously collected statistics corresponding to each segment along the paths. The target handoff cell 
corresponding to each HPS is also available from the database. We could in turn estimate the probability 
that a MT would hand off to each neighboring BS within any specified threshold time. 
 
3. Handoff Prioritization via Dynamic Resource Reservation 
Among the many possible applications for which an accurate mobility prediction technique would be a 
valuable tool, this article focuses on applying mobility predictions to dynamically adjust wireless resource 
reservations, so as to improve the efficiency of handoff prioritization schemes. In the classic handoff 
prioritization problem, handoff requests are prioritized over new call requests by reserving wireless 
resources at each BS that could only be utilized by incoming handoffs. The prioritization of handoffs is 
necessary so as to improve the user’s perception of QoS, because forced termination of an ongoing call 
during handoff (due to insufficient resources at the new BS) is generally more objectionable than the 
blocking of a new call request. Since any such resource reservation would inevitably increase the blocking 
probability of new calls, and reduce the overall system resource utilization, it is therefore extremely 
important that the reservations are made as sparingly as possible while achieving the desired degree of 



handoff prioritization. In this way, wireless service providers would be able to provision high quality 
services without compromising their revenues unnecessarily. 
 
Early work in handoff prioritization proposed static reservation at each BS as a solution [8], in which a 
fixed portion of the radio capacity is permanently reserved for handoffs. However, this approach is unable 
to handle variable traffic load and mobility; it might underutilize precious radio resources when handoffs 
are less frequent, and could experience high forced terminations when mobility is high. On the other hand, 
the use of real-time mobility predictions for resource reservations has the merit of being more robust to 
changes in traffic conditions. This is potentially more efficient than static reservation and non-predictive 
schemes. As mentioned earlier, several previous attempts [1][5][6] to utilize mobility predictions for 
resource reservations have the shortcoming of relying on unrealistic cell geometry assumptions. The 
applicability and performance of these techniques in actual networks are therefore unclear. Our previous 
work presented in [7] is the first handoff prioritization scheme based on mobility predictions that consider 
irregular cell boundaries. However, the prediction model still has room for improvement − it does not utilize 
road topology information, but merely uses instantaneous speed and direction for mobility predictions. 
Since MTs that are carried in vehicles are the ones that would encounter the most frequent handoffs, and the 
incorporation of road information improves the prediction accuracy for such MTs, our new mobility 
prediction technique described in this article could potentially achieve more efficient resource reservations. 
 
In our scheme, each BS shall have a “reservation target” (Rtarget) that is updated periodically according to the 
projected demands of anticipated handoffs from neighboring cells. A new call is accepted if the remaining 
resource after its acceptance is at least Rtarget. For a handoff request, the admission control rule is more 
lenient − it is admitted so long as there is sufficient remaining capacity to accommodate the handoff, 
regardless of the value of Rtarget. 
 
At each location update instant, say every 1 sec, all active MTs within the cell report their positions to the 
BS. Given both currently and previously reported positions, the BS uses an appropriate map-matching 
algorithm [9] to determine the road segment that each MT is transiting. The speed of the MT is also 
estimated. Using the information stored in the database, the BS could estimate the probability that a MT 
would hand off to a neighboring cell within any threshold time Tthreshold. 
 
The reservation target Rtarget at each BS is to be updated every TRSV. During each update, the BS estimates 
the amount of resources it needs to reserve at each neighboring cell on behalf of those active MTs currently 
within its coverage. Resources are reserved only for those MTs that might hand off to these neighbors 
within Tthreshold. Suppose the probability that MT i would hand off to neighboring cell Cj within Tthreshold is 
estimated to be p, and the resource requirement of MT i is Ri. The amount of resources to be reserved in Cj 
on behalf of MT i is computed as the product of p and Ri. The reservation requirements for all MTs that 
could hand off to a neighboring cell Cj are aggregated before being conveyed to Cj’s BS using a single 
request message. 
 
The threshold time Tthreshold could be interpreted as the time given to the target BS to set aside the requested 
amount of spare resources for the anticipated handoffs. During this time, spare resources are accumulated as 
they are released by active MTs that either end their calls or hand off to other cells; new calls are blocked so 
long as Rtarget is compromised. Thus, the value of Tthreshold could indirectly affect the forced termination 
probability (PFT) experienced by handoff calls entering the cell. Since the required value of Tthreshold for the 
same target PFT could vary over time when there are changes in dynamic factors such as system load, traffic 
conditions, user mobility, etc., Tthreshold should be dynamically adjusted to keep PFT at the desired target 
value. We utilize an adaptive algorithm used in [10] to control its value. The algorithm counts the number of 



forced terminations among a number of observed handoffs. It increases Tthreshold by 1 sec if the measured 
forced termination ratio exceeds a preset value, and decreases it by 1 sec otherwise. In the algorithm, the 
value of Tthreshold is limited to the range [0, Tthres_max]. 
 
4. Simulation Details and Results 
Handoff prioritization schemes are commonly evaluated in terms of two QoS metrics, namely new call 
blocking probability (PNC) and forced termination probability (PFT). As mentioned in Section 3, PFT may be 
reduced at the expense of increasing PNC. However, in the process of meeting the same PFT requirement, a 
more efficient scheme will be able to accomplish the task with a lower PNC than a less efficient scheme. The 
efficiency of the scheme depends on whether the reservations are made at the right place and time. 
Therefore, a predictive scheme should outperform a non-predictive scheme. Similarly, the efficiency of a 
predictive scheme should improve with its prediction accuracy.  
 
To facilitate the evaluation of the proposed scheme, a novel simulation model was designed. Previous work 
in the literature either assumes that MTs travel in straight lines for long periods of time, or assumes that 
MTs follow random movements that do not resemble vehicular motion on roads. Our simulation model 
incorporates road layouts that place constraints on MTs’ paths. This establishes a more realistic platform to 
evaluate the performance of any positioning-based prediction algorithm. 
 
The simulation network consists of 42 wireless cells. In order to eliminate boundary effects that could make 
it very difficult to comprehend the performance evaluation results, we have used a common approach found 
in the literature [10] – cells at the boundary wrap around as shown in Fig. 2. In this way, whenever a MT 
travels out of the network boundary, it is re-injected into the network again via the appropriate wrap-around 
cell as though a handoff has occurred from outside the simulation network. This compensates for any traffic 
loss at the network boundary. We randomly generate arbitrary road layouts based on some heuristic rules; 
real maps are not used because we require the roads to wrap around at the network boundary. The road 
layouts are designed to imitate those found in city areas. Fig. 3 shows an example of the road topology that 
was randomly generated for simulation purpose.  
 
Although the cell layout shown in Fig. 2 adopts the hexagonal cell model, the simulation model does not 
assume that handoffs occur at the hexagonal boundary. In the simulation network, the hexagonal model is 
merely used to determine the BS locations. In contrast to previously mentioned work in which handoffs are 
assumed to occur at either circular or hexagonal cell boundaries, the simulation model used here does not 
have well-defined cell boundaries. Instead, we randomly generate M = 100 points around each BS that 
influence the positions at which handoffs occur. We shall call them as handoff influence points (HIPs). 
Suppose R is the cell radius (assumed to be 1000 m in the simulations), which is typically defined as the 
distance from the BS to the vertex of the hexagonal cell model. When a MT comes within 0.075R from one 
or more of these HIPs, we assume that a handoff will occur during its transit through this region. The time at 
which the handoff shall occur is assumed to follow a uniform distribution within the time spent in the 
region. The target BS is assumed to be the nearest neighboring BS at the time when the handoff occurs, 
although this may not be the case in real life. The HIPs are created around the BS at regular angles θ° = 
360°/M apart. The distance between each point and the BS is first generated using truncated Gaussian 
distribution, with a mean of 1.15R and a standard deviation of 0.2R. All the distances are truncated to the 
range [0.95R, 1.35R]. Next, we perform smoothing by averaging the distance of each point with those of its 
immediate neighboring points, so as to eliminate any gap in the handoff region. 
 
We do not claim that the above model resembles the actual handoff position distribution in a real cellular 
network. However, we feel that it is sufficient for the purpose of creating an irregular handoff region with 



some uncertainty, so as to evaluate the performance of different handoff prioritization schemes. To our 
knowledge, no work has modeled the 2-D distribution of handoff positions in real cellular networks. 
Therefore, we are unable to make use of any previously known model in our simulations. 
 
To make the problem more interesting, we introduced traffic lights in our simulation model. Two sets of 
traffic lights are assumed. When one set is GREEN, the other set is RED. At a T-junction, we randomly 
assign one set to the two roads that make the largest angle. The other remaining road will be assigned the 
opposite set. At a cross-junction, the roads are assigned alternate traffic light sets. Each GREEN and RED 
signal shall last for 60 sec. We also assign a speed limit to each road segment chosen from the set 40 km/h, 
50 km/h, and 60 km/h with equal probability. Each MT will be randomly assigned a speed as it enters a new 
road segment, using truncated Gaussian distribution. The mean speed will be the speed limit of that 
particular road segment. The standard deviation is assumed to be 5 km/h, and the speed is truncated to a 
limit of three standard deviations from its mean. 
 
In this article, the unit of bandwidth is called bandwidth unit (BU), which is assumed to be the required 
bandwidth to support a voice connection [10]. Each cell is assumed to have a fixed link capacity C of 100 
BUs. For simplicity, we assume that the bandwidth requirement of each MT is symmetric, meaning that 
they have the same requirement in both uplink and downlink. However, it is straightforward to modify the 
scheme to handle asymmetric requirements.  
 
The traffic model used here is similar to the one used by [10]. Call requests are generated according to 
Poisson distribution with rate λ (connections/sec/cell) in each cell. The initial position of a new call and its 
destination can be on any road with equal probability. The path chosen by the MT is assumed to follow the 
shortest path possible. For each call request, we assume that it is either of type “voice” (requires 1 BU), or 
of type “video” (requires 4 BUs) with probabilities Rvo and 1−Rvo respectively, where Rvo is also called the 
“voice ratio” as in [10]. In the simulations, Rvo is set to 0.5. The lifetime for each connection is 
exponentially distributed with mean 180 sec. We adopt the same definition of offered load per cell as [10], 
which is the product of connection generation rate λ, average connection’s BU requirement [Rvo + 4(1−Rvo)], 
and average connection lifetime (180 sec). We normalize the above by dividing it with the link capacity C, 
so as to obtain the normalized offered load per cell, L. In our simulations, we set L to be 1.0. 
 
We have simulated four additional schemes for comparison purpose: 
Reactive scheme: This scheme is purely reactive with no prediction. It serves as a lower bound for the 
efficiency of the schemes considered. It measures the forced termination ratio among a number of handoffs 
recently observed, and increases the reservation in the cell when the PFT target is not achieved, or decreases 
it otherwise. 
Choi’s AC1 scheme: This is one of the three schemes proposed in [10]. In their simulations based on 1-D 
cell layout, their AC3 scheme performed best among the three schemes, namely AC1, AC2 and AC3. 
However, in our simulations based on 2-D cell layout, we discover that AC1 has the best performance, 
whereas AC2 and AC3 are over-conservative and has much worse efficiency than the Reactive scheme. 
Therefore, we only present the results for AC1 in this article. This scheme works by estimating the 
probability that a MT would hand off into a neighboring cell within an estimation time window Test, based 
upon its previous cell, and its extant sojourn time (i.e., the time it has already spent in the current cell). It 
requires the use of a knowledge base containing the time spent by previous MTs in the cell, the previous 
cells that they came from, and their corresponding target handoff cells. Test is dynamically adjusted based on 
the measured forced termination ratio among a number of handoffs recently observed, and it indirectly 
controls the amount of resource reservations. 



Linear extrapolation (LE) scheme: This is a modified version of the scheme proposed in [7]. The MTs are 
also assumed to possess positioning capability. However, no road information is used in the mobility 
predictions. Instead, the MT is simply predicted to continue moving straight in the direction obtained using 
linear regression over its last few positions. Its speed is estimated to be the average speed over its last few 
positions. The handoff region is approximated using a number of points known as handoff approximation 
points (BAPs). Each BAP is assigned a most likely target handoff cell computed from previous handoff 
requests. During each prediction instant (every 1 sec), the BS uses a fast search algorithm to determine the 
BAP that is closest to each MT’s trajectory, and estimate the time taken for the MT to reach this point. If the 
time is found to be shorter than a threshold time Tthreshold, the MT’s resource requirement will be reserved at 
the target handoff cell. Tthreshold is dynamically adjusted using a mechanism similar to the one used for 
adjusting Test in Choi’s AC1 scheme. 
Benchmark scheme: This scheme serves as a benchmark indicating the best achievable results if we were to 
have perfect knowledge regarding when and where handoff requests will occur. It is impossible to achieve 
this in real-life. Reservations are computed for each active MT at regular time intervals (1 sec). If a MT’s 
handoff time is within Tthreshold, the MT’s resource requirement will be reserved at the target handoff cell. 
Tthreshold is dynamically adjusted using a mechanism similar to the one used for adjusting Test, so as to meet 
any specified PFT target. 
 
In the following, we present the results obtained from the simulations. Note that all results presented herein 
are the averages over 42 cells in the simulation network. In our simulation with no handoff prioritization, 
both PNC and PFT are 7.6%. This is unacceptably high for PFT, thus explaining the need for handoff 
prioritization. Fig. 4 shows the plots of PNC versus PFT for the five schemes considered. For each scheme, 
we varied the target PFT so as to illustrate its tradeoff with PNC. For any fixed L (set to 1.0 in the 
simulations), the relative positions of such tradeoff curves could demonstrate the relative efficiencies among 
the different schemes. A curve that is closer to the origin represents a more efficient scheme. It means that 
the scheme is able to achieve the same PFT target while trading off a smaller increase in PNC.  
 
Among the five schemes, the Reactive scheme has the worst efficiency since it does not make use of any 
prediction. Choi’s AC1 scheme has better efficiency than the Reactive scheme because it possesses some 
intelligence in where and when the resources should be reserved. However, it has lower efficiency than the 
next three schemes. This is probably because it may be insufficient to predict the mobility of a MT based on 
its previous cell information and its extant sojourn time. Moreover, calls that are newly generated in the cell 
do not have previous cell information. This hinders the scheme’s prediction accuracy, thus lowering its 
efficiency. The LE scheme has slightly better efficiency over Choi’s AC1 scheme. The RTB scheme 
described in this article demonstrates even greater improvement. These results show that mobility prediction 
schemes based on mobile positioning information are more accurate, thus leading to more efficient 
reservations. The most efficient scheme among the five schemes considered is the Benchmark scheme. As 
mentioned earlier, this is an idealized scheme that possesses complete knowledge of when and where the 
next handoff of each MT will occur. It merely serves as a bound to the best efficiency that could be 
achieved by other schemes. For a target PFT of 1%, the Reactive scheme has a PNC of 17.9%, while the 
lower bound set by the Benchmark scheme is 15.8%. The RTB scheme is able to achieve a PNC of 16.5%.  
 
As we have seen, the plots agree with intuition that handoff prioritization efficiency improves as the amount 
of knowledge incorporated into the schemes increases. With the additional knowledge of real-time mobile 
positioning information, the LE scheme is able to outperform Choi’s AC1 scheme, even though it is based 
on a simple linear extrapolation approach. For the RTB scheme, the use of both real-time mobile positioning 
information and road topology knowledge further reduces the uncertainty in predicting the MTs’ future 
movements. As a result, its performance is even closer to the limit set by the Benchmark scheme. 
 



5. Conclusion  
In this article, we have described a mobility prediction technique in which each BS performs predictions for 
all active MTs under its service. The technique is built upon the assumption that future MTs would be 
equipped with reasonably accurate positioning capability. Unlike previous attempts to perform mobility 
predictions based on mobile positioning, which have either assumed hexagonal or circular cell geometries, 
our scheme does not require any cell geometry assumption. We have also incorporated road topology 
information into the prediction technique, which could potentially yield better prediction accuracy for MTs 
that are carried in vehicles. 
 
Among the many possible applications for which mobility predictions could prove useful, this article 
outlines its use for dynamic resource reservation so as to prioritize handoff calls over new calls. With 
mobility prediction, the reservations at each BS could be dynamically adjusted according to the resource 
demands of MTs that are anticipated to hand off into the cell from its neighboring cells. By comparing the 
plots featuring the tradeoffs between new call blocking probability and forced termination probability 
obtained from several schemes, we demonstrate that reservation efficiency improves as the amount of 
knowledge incorporated into the scheme increases, and the RTB scheme has the potential to achieve 
performance that is closest to the limit set by the idealized Benchmark scheme. The use of the RTB scheme 
could therefore provide subscribers with the desired degree of call-level QoS throughout their call duration, 
while achieving higher resource utilization than other handoff prioritization schemes. 
 
With the emergence of telematics systems in vehicles, motorists may receive dynamic route guidance based 
on real-time traffic information. If this routing information were to be made available to the wireless 
network, it could help to further diminish the uncertainty in mobility predictions, and realize even more 
efficient resource reservation schemes. 
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