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Abstract—We revisit the use of throughput metrics in studying
Medium Access Control (MAC) protocols in static multi-hop
wireless networks. To complement existing single-hop and multi-
hop throughput notions, we first propose a unified normalized
throughput expression. Since current multi-hop metrics do not
give much intuition on how close a MAC protocol’s throughput
performance is to the best achievable for a given network
topology, we present a new variant that benchmarks against
the maximum achievable throughput. It can be characterized by
the product of the number of maximum successful simultaneous
transmissions smax under saturated traffic conditions, and link
rate R. We show how to compute smax via a linear programming
formulation and demonstrate its use in both string and grid
topologies. We also derive exact mathematical expressions for the
maximum simultaneous transmissions for these two topologies.

Index Terms—MAC protocol evaluation, multi-hop throughput
comparisons, throughput metrics, performance benchmarking.

I. INTRODUCTION

BY exploiting spatial reuse in multi-hop settings, nodes

sufficiently far apart can transmit simultaneously to im-

prove overall network performance. To this end, there are

many works that focus on medium access control (MAC) pro-

tocol design and its evaluation [1]–[10]. Rather than proposing

yet another protocol, we explore the use of throughput metrics

in the performance evaluation of MAC protocols.

Throughput in single-hop networks is well understood [10].

The computed throughput in bits per second (bps) can be

normalized with the link transmission rate R (assuming that all

nodes use the same rate), so that the resultant value is within

the range [0,1]. This is essentially benchmarking against the

maximum achievable throughput since only a single node can

successfully deliver its data packets at rate R, in a network

with negligible propagation delay. Unfortunately, this is not

so straightforward for multi-hop networks. From the literature,

two commonly adopted throughput metrics for multi-hop net-

works are: aggregate throughput (also called network/system

throughput) [1]–[3] and throughput per-node (also called per-

station/per-user throughput) [4]–[6]. Aggregate throughput is

the summation of the throughputs of all nodes in a network.

For throughput per-node, the aggregate throughput is divided

by the total number of nodes. Some works also normalize

throughput per-node by link rate R [7]–[9]; this is called rate-

normalized throughput per-node.

We now explain two limitations that arise from the use of

the aforementioned multi-hop throughput metrics. First, these
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metrics are not a generalization of the single-hop throughput

metric, in that they do not seek to benchmark against the

maximum achievable throughput. Note that the maximum

achievable throughput in multi-hop networks is different from

the single-hop case. Here, the quantity we are interested in is

the maximum aggregate data rate that can be supported for

all nodes simultaneously in a given network topology, rather

than only a single node’s rate R. Hence, the existing multi-

hop throughput metrics do not provide as much intuition as the

single-hop throughput metric, with regard to the performance

relative to the best achievable. For instance, the use of rate-

normalized throughput per-node often results in a very low

normalized value (e.g., on the order of 10−2 in [7]–[9]), and

does not provide any hint about how far it is from the best

achievable. As another example, we will show later that when

Aloha is applied in a multi-hop network with string topology,

the peak throughput is actually quite close to the theoretical

peak for single-hop networks, which is around 18% of the

maximum achievable throughput. This cannot be appreciated

if the rate-normalized throughput per-node metric were used,

as it only gives a normalized, unitless value of around 0.09.

Second, many previous works only compare a proposed

MAC protocol’s throughput against that of a de facto MAC,

such as the IEEE 802.11 [1]–[3]. This comparison approach is

inadequate for performance analysis, because it only portrays

a relative performance improvement/degradation. Instead, a

better approach would be benchmarking with respect to the

best achievable bit-rate, which gives an absolute performance

measure, and is often of greater interest to protocol designers.

Here, we propose a unified normalized throughput metric,

which allows the existing normalized throughput of both single

and multi-hops to be expressed in a general formula. Since

the current multi-hop metrics do not yield much insight on

the best achievable bit-rate, we present a new variant, that

benchmarks against the Maximum Achievable Throughput

(MAT). The MAT-normalized throughput is characterized by

the product of maximum number of successful simultaneous

transmissions and link rate. To compute the former, a binary

integer linear programming (BILP) problem is formulated. We

next demonstrate the use of our metric in both string and

grid topologies. We also derive exact mathematical expressions

for the maximum successful simultaneous transmissions for

these two topologies. Unlike existing metrics, our metric

allows for better performance comparison across different

MAC protocols.

II. OUR PROPOSED THROUGHPUT METRIC

A. The Unified Normalized Throughput Metric

We first summarize three existing throughput metrics that

are commonly used for evaluating a given MAC protocol P :
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• Aggregate throughput (in bps), γag(P):

γag(P) ,

∑i=n

i=1 ri(P) · LDATA

T
, (1)

where n is the total number of nodes, LDATA is the data

packet’s payload length in bits, ri(P) is the total number

of data packets successfully received by destination i in

a duration of T seconds; the total number of data packets

received depends on the MAC protocol employed.

• Throughput per-node (in bps), γnd(P):

γnd(P) , γag(P)/n. (2)

• Rate-normalized throughput per-node (unitless), γr(P):

γr(P) , γnd(P)/R = γag(P)/[n · R]. (3)

To complement the existing throughput metrics, we propose

a unified normalized throughput metric, γnorm(P):

γnorm(P) , γag(P)/[β ·R], (4)

where β > 0 is a normalization factor. For single-hop

networks, we set β = 1 and (4) reduces to the usual normal-

ized throughput metric. For multi-hop networks, β = 1/R,

β = n/R and β = n give (1), (2) and (3) respectively. Unlike

the single-hop’s throughput notion, these existing variants of

the multi-hop throughput metric do not seek to normalize by

the best achievable bit-rate. We therefore introduce the “MAT-

normalized throughput”, γMAT(P), by setting β = smax. Here,

0 ≤ γMAT(P) ≤ 1, and smax is defined as the maximum

number of successful simultaneous transmissions that can be

supported by a given multi-hop network topology, for which

all simultaneously transmitted data packets do not collide

with each other. In other words, we normalize the computed

aggregate throughput by maximum achievable throughput,

which is the maximum aggregate data bit-rate characterized

by the product of smax and link rate R. Note that, smax ≤ n/2,

since there could be at most n/2 number of simultaneous

transmissions at any given time, due to the transceiver’s half-

duplex property. To further tighten the bound, we seek an

exact maximum throughput by finding the optimal smax, via an

optimization approach in Section II-B. Compared to existing

metrics, γMAT(P) offers a clear quantitative indication of how

close is the protocol’s performance to what is best achievable,

and is more useful in designing a better MAC protocol. Note,

however, that we do not account for the protocol’s fairness

when computing smax, which we intend to address in our

future work. Nonetheless, it can be adopted for evaluating

all classes of MAC protocols (e.g., contention-based MAC,

schedule-based MAC, etc.), that do not enforce fairness.

B. The Binary Integer Linear Programming Formulation

Using a BILP optimization approach, we now explain how

to compute smax for a given network topology.

1) General Assumptions: We consider a static multi-hop

wireless network with n homogenous nodes, and negligible

propagation delay. Each node has a single omni-directional,

half-duplex transceiver with link rate R. All nodes are arbi-

trarily placed and they communicate using a single-channel.

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

Fig. 1. A square grid (6×6) topology used in our evaluations. Every node is
placed at the grid intersection point. Each of the non-boundary nodes (square
node) has four one-hop neighbors. In contrast, each of the boundary nodes
(round node) has fewer than four neighbors; for example, the neighbors of
node 1 are nodes 2 and 7.

To obtain the maximum throughput, each node is assumed

to be always backlogged and has packets destined to any of

its one-hop neighbors. They also have a common and fixed

communication range, which is the same as the interference

range. Note that the formulation can also be modified accord-

ingly if the interference range is assumed to be longer than

the communication range. The channel is assumed to be error-

free, and packet reception fails if and only if packets collide

with each other. Although we ignore the effects of imperfect

channel in this paper, it can be considered by multiplying (4)

with a factor of (1 − pe), where pe is the packet error rate.
2) Problem Formulation: We denote the set of n nodes

as T = {1, · · · , n}. A set of binary decision variables aij
are introduced, in which aij = 1 if node i is scheduled to

transmit to node j, and aij = 0 if otherwise. We define N (x)
as the set of one-hop neighboring nodes of node x. We also

define ax =
∑

y∈N (x) axy. Finally, we define M as a large

number that is greater than
∑

k∈T ak. Our BILP formulation

is presented as:

maximize
∑

i∈T

∑

j∈N (i)

aij (5)

subject to: ∑

j∈N (i)

(aij + aji) ≤ 1, ∀i ∈ T (6)

aij +
∑

k∈N (j)∪{j}\{i}

(ak)− (xij ·M) ≤ 1, ∀i ∈ T , ∀j ∈ N (i) (7)

aij + xij = 1, ∀i ∈ T , ∀j ∈ N (i) (8)

aij = {0, 1}; xij = {0, 1}, ∀i ∈ T , ∀j ∈ N (i) (9)

For the objective function in (5), we seek to maximize the

total number of links (e.g., aij) that can be activated simulta-

neously. Since a node operates in half-duplex, constraint (6)

ensures that it cannot transmit and receive at the same time.

In addition, constraint (7) states that packet transmission from

a sender node i ∈ T to its intended receiver node j ∈ N (i)
is allowed if and only if the packet reception is free from

interference at the receiver j (i.e., the receiver j and all its

one-hop neighbors in N (j) must be inactive). Note that in

(7), we also introduce a binary variable xij (as defined in (8))

to ensure that no unnecessary constraint is imposed on the sum

of ak by (7) if aij is inactive. The above BILP can be solved

using a standard optimization solver such as CPLEX [11].

Finally, smax =
∑

x∈T ax from any optimal solution found.

C. Illustration Using Regular Structured Topologies

We illustrate the use of our metric using both string and

square grid networks (see Fig. 1), which are commonly used
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Fig. 2. Throughput comparisons of Aloha and CSMA/CA MAC protocols in both string (6 nodes) and square grid (6 × 6 nodes) topologies, by using
different throughput metrics: (a) aggregate throughput, (b) rate-normalized throughput per-node, and (c) MAT-normalized throughput.

TABLE I
CPLEX’S SOLUTIONS OF sMAX FOR STRING TOPOLOGY

n 1 2 3 4 5 6 7 8 9 10

s
string
max (n) - 1 1 2 2 3 3 4 4 5

n 11 12 13 14 15 16 17 18 19 20

s
string
max (n) 5 6 6 7 7 8 8 9 9 10

TABLE II
CPLEX’S SOLUTIONS OF sMAX FOR SQUARE GRID TOPOLOGY

d 1 2 3 4 5 6 7 8

n = d× d 1 4 9 16 25 36 49 64

s
grid
max(n) - 2 4 8 11 18 22 32

d 9 10 11 12 13 14 15 16

n = d× d 81 100 121 144 169 196 225 256

s
grid
max(n) 37 50 56 72 79 98 106 128

for evaluating MAC protocols. Unless stated otherwise, we

adopt the same assumptions as in Section II-B1, for both

topologies. Note that, both topologies are non-wraparound.

1) Illustrating MAT-normalized throughput: Fig. 2(a)–2(c)

show the use of different throughput metrics to evaluate Aloha

and CSMA/CA (Carrier Sense Multiple Access with Collision

Avoidance) protocols, in both string (6 nodes) and square grid

(6×6 nodes) networks. Note that, from CPLEX solutions, smax

for these string and grid topologies are 3 and 18, respectively

(denoted by sstring
max (6) and sgrid

max(36) in Table I and Table II,

respectively). We also set R = 1 Mbps and LDATA = 1 KB.

In Fig. 2(a), we observe that the aggregate throughput grows

as the network size increases from 6 nodes to 36 nodes for both

protocols, since a larger network could accommodate more si-

multaneous transmissions. However, the aggregate throughput

metric does not illustrate the fact that a given MAC protocol

experiences less contention in the string topology (i.e., due

to less number of neighbors), compared to its counterpart in

grid topology. This, however, is shown in both Fig. 2(b)–2(c),

in which it is realized that a MAC actually performs more

efficiently in the string case, compared to the grid topology.

More importantly, the use of our MAT-normalized through-

put in Fig. 2(c) offers even more insights, as it can show how

close is a protocol’s performance from the maximum possible

throughput for a given network topology. As an example, it can

now be appreciated from Fig. 2(c) that Aloha’s peak through-

put for a multi-hop string topology is actually quite close to its

theoretical peak for single-hop networks, which is around 18%

of the maximum achievable throughput. In contrast, the metric

in Fig. 2(b) may give a misleading perception that the Aloha’s

peak throughput is much lower (around 0.09). Note that, we

have also simulated other string topologies with different sizes,

and obtained similar conclusions.

2) smax for both string and square grid topologies: Here,

we derive the closed-form expressions of smax for both string

and square grid topologies. This will be useful for future MAC

protocol designers to evaluate their protocols’ performance

using MAT-normalized throughput based on these two topolo-

gies, without the need to solve the BILP.

Theorem 1. smax for a non-wraparound string topology of

{n|n ∈ Z
+ and n 6= 1} nodes, sstring

max (n) is ⌊n/2⌋.

Proof: To ease our explanation, each node is given a unique

ID (node IDs of 1 to n). We first show that the above

expression is valid, when n is even. For n = 2, there is a single

transmission. For n = 4, there can be 2 simultaneous transmis-

sions; the transmission patterns are either {[1, 2], [4, 3]} (as the

4-node case in Fig. 3), or {[2, 1], [3, 4]}, where [x, y] denotes

a sender x transmits to a receiver y. Note that, the sender-

receiver (S-R) node pair of 3-4 has an “inverse” transmission

pattern, with respect to that of their adjacent S-R pair of 1-2.

Similarly, for n = {6, 8, 10, . . .}, every subsequent two nodes

further along the topology forms an S-R pair that assumes

an inverse transmission pattern from the preceding pair, so as

to allow maximal successful simultaneous transmissions (see

Fig. 3). From these repeating patterns, it can be seen that for

even n, sstring
max (n) = n/2 = ⌊n/2⌋. Finally, when n is odd, the

continuous string of n−1 nodes can form (n−1)/2 disjoint S-

R pairs, thus leaving a residual node at the end of the topology

(see Fig. 3). To yield the optimal number of transmissions

without causing any collision, those S-R node pairs can also

assume the inverse transmission pattern. Hence, for odd n,

sstring
max (n) = (n−1)/2 = ⌊n/2⌋. �

Theorem 2. smax for a non-wraparound square grid topology

of {n|n = d× d, d ∈ Z
+ and d 6= 1} nodes, sgrid

max(n) is:

sgrid
max(n = d× d) =

{

d2/2, when d is even,

[d2 − (d− 2)]/2, when d is odd.
(10)

Proof: For a d× d square grid, we first show that sgrid
max(n =

d × d) = d2/2, when d is even. Now, let us assume that d
number of nodes in the 1st-row of the grid topology employ

the inverse transmission patterns, as is done in the string
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Fig. 3. Several cases of string topologies, and their respective possible simul-
taneous transmission patterns that yield the optimal number of transmissions.

topology case, so as to maximize the number of successful

simultaneous transmissions. In this case, there are d/2 S-R

node pairs that can be allowed to transmit simultaneously.

Then, in the 2nd-row of the grid, the set of nodes that are

directly under the same columns as the receiving nodes in

the 1st-row, cannot transmit because this would interfere with

the packet receptions of those receiving nodes in the 1st-row

(e.g., nodes 10, 11, 14, and 15 cannot transmit in our example

in Fig. 4). Instead, they could receive from their respective

adjacent neighbors; thus, the d number of nodes in the 2nd-

row also have the same inverse transmission patterns, as those

nodes in the 1st-row. Following this argument, it can be seen

that the remaining rows of the square grid, will also have

the same transmission patterns as the 1st-row. Hence, we have

sgrid
max(n) = d/2× d, when d is even.

Next, we show that sgrid
max(n = d × d) = [d2 − (d − 2)]/2,

when d is odd. For a 3 × 3 grid, the optimal number of

transmissions is 4; these transmissions are characterized by

a “square” pattern, in which 4 non-conflicting S-R node pairs

encompass an idle node, as shown in Fig. 5(a). For cases

of d = {5, 7, 9, . . .}, it is found that a generic transmission

pattern, which consists of both square patterns (of size 3× 3)

and inverse transmission patterns, always yields an optimal

number of transmissions. As grid sizes grow, it can accommo-

date multiple adjacent square patterns, which share common

S-R node pairs at their squares’ boundary, so as to maximize

the number of simultaneous transmissions (see Fig. 5(b); note

that those square patterns can start from any one of the grid’s

corners). As illustrated, these square patterns divide the grid

into two regions (i.e., lower and upper regions), where those

nodes can assume the inverse transmission patterns, so as to

avoid interfering with the squares’ transmissions. Let us denote

q as the number of square patterns supported in a d×d square

grid. For d = {3, 5, 7, 9, . . .}, q would be {1, 2, 3, 4, . . .},

respectively; thus, we can express q = (d−1)/2. Based on the

above generic optimal transmission pattern for odd d, s
grid
max(n)

can be computed as the summation of number of successful

simultaneous transmissions in: (i) the square patterns (nsq),

(ii) the lower region (nlo), and (iii) the upper region (nup).

Therefore, sgrid
max(n) is computed as,

sgrid
max(n) = nsq + nlo + nup

= (3q + 1) +

q−1
∑

i=1

i+

d−3
∑

i=q−1

i

= 4q + [(d− 3)(d− 2)]/2 = [d2 − (d− 2)]/2. �

We note that the transmission pattern in Fig. 5(b) is just one

of the many possible optimal solutions. This means that multi-

hop routing can be achieved by alternating between different
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Fig. 4. A possible simultaneous transmission pattern that yields the optimal

number of transmissions of s
grid
max(64) = 32 for the square grid topology when

d is even (8× 8 here).
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Fig. 5. The possible simultaneous transmission patterns that yield the optimal
number of transmissions in the square grid topology when d is odd: (a) 3×3
square grid topology, where s

grid
max(9) = 4, (b) 9 × 9 square grid topology,

where s
grid
max(81) = 37.

optimal transmission patterns.

III. CONCLUSION

To better evaluate MAC protocols in multi-hop networks,

we proposed the MAT-normalized throughput metric. It offers

more insights because it compares a protocol’s throughput

performance to the best achievable. This serves as a useful

guideline for system designers to decide whether any potential

protocol enhancement is worth the effort and allows for better

performance comparison across different MAC protocols.
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