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Abstract. We put forth in this paper a geometrically motivated motion error analysis which is capable of supporting
investigation of global effect such as inherent ambiguities. This is in contrast with the usual statistical kinds of motion
error analyses which can only deal with local effect such as noise perturbations, and where much of the results
regarding global ambiguities are empirical in nature. The error expression that we derive allows us to predict the
exact conditions likely to cause ambiguities and how these ambiguities vary with motion types such as lateral or
forward motion. Given the erroneous 3-D motion estimates caused by the inherent ambiguities, it is also important
to study the behavior of the resultant distortion in depth recovered under different motion-scene configurations.
Such an investigation may alert us to the occurrence of ambiguities under different conditions and be more careful
in picking the solution. Our formulation, though geometrically motivated, was also put to use in modeling the effect
of noise and in revealing the strong influence of feature distribution. Experiments on both synthetic and real image
sequences were conducted to verify the various theoretical predictions.
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1. Introduction

The estimation of the 3-D motion and structure is no-
torious for its noise sensitivity; a small amount of error
in the image measurements can lead to very differ-
ent solutions. Structure from motion (SFM) algorithms
proposed in the past two decades faced this problem
to varying extent which has led to many error analy-
ses (Adiv, 1989; Daniilidis and Spetsakis, 1997; Weng
et al., 1991; Young, 1992). To date, however, few of
them have ever attempted to give a topological char-
acterization of the residuals associated with different
optimization criteria which would make explicit the
configuration of the error surface, especially the distri-
bution of the local minima of the cost functions. Ideally,
such a characterization should consider the ambiguities
under a full range of motion-scene configurations. The
rationale for such a comprehensive description of the

ambiguities is that since most SFM algorithms perform
well only in restricted domains, it was important to
evaluate the limits of applicability of these algorithms.
That is, each algorithm should be evaluated specifically
against likely problem conditions. If such understand-
ing could be achieved, it then becomes possible to fuse
the results of several SFM algorithms or to fuse the
visual motion cues with other cues such as vestibular
signals. This viewpoint has been expressed by Oliensis
(2000a).

In this paper, we propose an approach that lends it-
self towards understanding the full behavior of SFM
algorithms. Instead of dealing with specific algorithms
each using different optimization techniques, we study
one class of algorithms based on the weighted differ-
ential epipolar constraint. This class includes most of
the existing differential SFM algorithms using optical
flow as input. What permits an unifying view of these
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different algorithms is a new optimization criterion to
be presented in this paper. It is based on the difference
between the original optical flow and the reprojected
flow obtained via a backprojection of the reconstructed
depth, analogous to the distance between the obser-
vation and the reprojection of the reconstructed point
in the discrete case (Zhang, 1998). We showed that
the different weighted differential epipolar constraints
used in the literature correspond to the different ways
of reconstructing depth using the optimization crite-
rion presented in this paper. Thus this criterion also
lends a geometric interpretation to the various weights
used. More importantly, it allows us to develop a sim-
ple and explicit expression for the residual errors of
the optimization functions in terms of the errors in the
3-D motion estimates and enables us to predict the ex-
act conditions likely to cause ambiguities. The result
is that the inherent ambiguities in both translation and
rotation estimates are identified; how the likelihood of
these ambiguities varies with the scene and the motion
types such as lateral or forward motion is also made
apparent. To round off this section on the investigation
of motion ambiguity, we extend our analysis to include
the effect of noise in the image measurements, using
both the isotropic and the anisotropic noise models. Our
investigation unravels the impact a realistic anisotropic
noise distribution can have on the topology of the cost
functions.

The behavioral description of SFM algorithms
would not be complete without saying something about
how the depths would be recovered given such motion
ambiguities. As a consequence of the motion ambi-
guities, the estimated 3-D motion parameters contain
errors; thus the reconstructed depth would be a dis-
torted version of the physical depth. The need to char-
acterize such depth distortion arising from errors in the
motion estimates prompted the work of Cheong et al.
(1998), which gave an account of the systematic nature
of the errors in the depth estimates via the so-called iso-
distortion framework. It showed that the most general
description of such a transformation from the physical
to the perceived space is very complicated, belonging
to the family of Cremona transformations. The work of
Cheong and Xiang (2001) built upon that framework
and considered the depth distortion under two generic
types of motion, namely, lateral and forward motion,
with a view to obtain robust recovery of depth infor-
mation. In this paper, we use the same framework to
study the special properties of depth distortion when the
spurious motion estimates are caused by the inherent

ambiguities associated with any general motion. The
consequence of these distortion enables us to explain
some well-known human perceptual illusions such as
the “rotating cylinder illusion”. Correlatively, if human
suffers from such distortion and yet can perform many
tasks efficiently, it is hoped that a deeper understand-
ing of the distortion would help to emulate human in
these performances. The understanding of such dis-
tortion may also be useful for other purposes such as
alerting one to the occurrence of ambiguities, thereby
allowing us to pick up the true solution.

1.1. Relation to Previous Work

The SFM problem is usually treated as two subprob-
lems, namely, the measurement of 2-D image displace-
ment (correspondences) or velocity (optical flow), and
the extraction of 3-D relative motion and structure in-
formation using as input the 2-D image measurements.
Due to the ill-conditioned nature of the first subprob-
lem, the input to the 3-D motion estimation algorithms
inevitably contains errors. In view of such errors, most
of the previous error analysis on 3-D motion esti-
mation (Adiv, 1989; Daniilidis and Spetsakis, 1997;
Weng et al., 1991; Young, 1992; Heeger and Jepson,
1992; Maybank, 1993) related the errors of the esti-
mated 3-D motion parameters to the measurement er-
rors in the first subproblem. The errors are typically
expressed as a high variance or a bias in the motion pa-
rameters through some statistical analysis (Adiv, 1989;
Daniilidis and Spetsakis, 1997; Weng et al., 1991;
Young, 1992; Heeger and Jepson, 1992; Maybank,
1993), or given as empirical figures (Dutta and Snyder,
1990) through some simulations. A comprehensive
survey of such analysis was given by Daniilidis and
Spetsakis (1997). Several results have been established
by such analysis:

• Maybank (1993) and Heeger and Jepson (1992) es-
tablished the result that the plane defined by the true
translation and the optical axis can be determined by
most SFM algorithms reliably. They obtained this
result based on strict assumptions such as infinites-
imal field of view (FOV). The finding is closely
related to the bas-relief ambiguity obtained in this
paper, although we do not need the field of view
assumption.

• If the field of view is small or depth variation is insuf-
ficient, rotation about an axis parallel to the image
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plane can easily be confounded with lateral trans-
lations. This has been demonstrated through both
theoretical work and experimental study (Daniilidis
and Spetsakis, 1997).

• The estimated translation is biased towards the view-
ing direction if the error metric is not appropriately
normalized.

Little work has been contributed to a systematical
characterization of the topology of the cost functions.
Recently, however, several studies have emerged in this
direction. Soatto and Brockett (1998) and Chiuso et al.
(2000) attempted to achieve optimal SFM (in differ-
ential approaches) by understanding the error surface
configuration of the cost functions. They noted the exis-
tence of a minimum at the opposite end of the bas-relief
valley (termed as rubbery ambiguity in their papers),
and attributed it to the presence of noise, although the
simulation results showed that the minimum persisted
with noiseless input. Ma et al. (2001), adopting the dis-
crete approach, unified different optimization criteria
under an “optimal triangulation” procedure and ana-
lyzed the impact of noise on the ambiguities for dif-
ferent optimization criteria. They characterized the be-
havior of the critical points under noise by making use
of the properties of the so-called “essential manifold”.

The major difference between our work and the pre-
ceding work lies in the fact that we highlight the impor-
tance of the inherent ambiguities of the SFM problem
itself, without considering the effect of noise initially.
Indeed, all the major ambiguities identified in the lit-
erature can be accounted for by such noiseless consid-
eration. We argue that while dealing with the statisti-
cal adequacy of the various criteria is important, it is
equally important to understand the detailed nature of
the inherent ambiguities which is caused by the geom-
etry of the problem itself and thus cannot be removed
by any statistical schemes (relieved, yes). In this re-
spect, the work of Fermüller and Aloimonos (2000) and
Oliensis (2000b, 2001) are the closest in spirit to our
work. Not surprisingly, there are many common find-
ings, though there are some aspects that are different
too.

The work of Fermüller and Aloimonos (2000) pre-
sented a geometrical-statistical investigation of the
observability of 3-D motion. They studied the con-
ditions on the errors in the motion estimates for
the local minima on error surface to arise. The cost
functions are expressed in terms of the true motion
parameters and the errors in the estimated motion

parameters. Our work adopted similar notations but
used very different method of analysis. Various as-
sumptions were required in their work such as ran-
dom distribution of feature points over the image
plane and random depths over the 3-D space. They
also assumed small FOV and neglected all the sec-
ond order flow terms caused by the rotational pa-
rameters. The epipolar constraint considered in their
work was unweighted, which, together with those as-
sumptions led to some results that were different from
ours. In particular, it was shown that when all the
motion parameters are estimated simultaneously, the
solution for the focus of expansion (FOE) can have
a local minima at the image center, which is obvi-
ously due to the unweighted epipolar constraint. Our
result shows that if the epipolar constraint is prop-
erly weighted, this minima should not occur, un-
less some specific motion-scene configuration such
as forward motion arises, in which case the true
minimum will also be at the image center. Indeed,
our paper considers a variety of motion-scene con-
figurations which are not studied in Fermüller and
Aloimonos (2000). Finally, the kind of noise consid-
ered in Fermüller and Aloimonos (2000) was found
to have no influence on the overall structure of the
cost functions. Our theoretical analysis and experi-
mental results show that a more realistic noise model
often has significant impact on the cost function
behavior.

The objective of Oliensis’ work (Oliensis, 2000b,
2001) is very similar to ours, that is, to characterize the
overall error surface via an explicit analytical model.
However, the means through which we achieve the end
are quite different. Our approach is much simpler, al-
lowing us to achieve an intuitive grasp of the geometric
nature of the ambiguities. For instance, we explain the
formation of the local minimum at the opposite end
of the bas-relief valley (termed as flipped minimum in
Oliensis’ work) through the coupling of the rotational
and the translational motions. Our more intuitive for-
mulation renders it more suitable for analysis under a
wider range of motion-scene configurations; specifi-
cally, we focus on different types of translational mo-
tions, ranging from purely forward motion to purely
lateral motion. Other factors that influence the error
surface, such as the distribution of feature points and
the scene structure, are also studied in a more system-
atic and detailed manner. Oliensis’ work concentrated
only on the error surface for translation estimation; the
corresponding ambiguities in the rotation estimates are
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not made explicit. Our work fully characterizes the er-
ror surfaces for both the rotational and the translational
parameters.

Finally, in contrast to our work, all the preceding
works focus on motion estimation and devote much
less attention on the closely related problem of depth
estimation. While some of the works (Weng et al., 1991;
Szeliski and Kang, 1997; Grossmann and Victor, 2000)
predicted the sensitivity of the depth estimates to small
amounts of image noise, the situation where the er-
rors in the depth estimates arise from the erroneous
3-D motion parameters has not been dealt with, ex-
cept in the case of critical surface pairs (Horn, 1987;
Negahdaripour, 1989).

1.2. Organization

The organization of this paper is as follows. First, we
briefly review in Section 2 the optimization criteria in
both the discrete and the differential cases. We then in-
troduce the notions of the iso-distortion framework and
discuss how it can be used to address the reliability of
depth recovery. In Section 3, the differential reprojec-
tion criterion is proposed to unify the various criteria
based on differential epipolar constraints. We then seek
to characterize the various inherent ambiguities in 3-D
motion estimation and the corresponding depth distor-
tion properties under these ambiguity configurations.
We employ a cost function visualization method to vi-
sualize the topology of the cost functions, so as to both
verify the various theoretical predictions and to reveal
further properties of the cost functions. Based on such
understanding, we are able to explain some well-known
human visual illusions. We characterize the role of the
measurement noise on the behavior of SFM algorithms
in Section 4. In particular, the global effects of isotropic
and anisotropic noise distribution are studied. These are
followed by experiments on real images to verify the
various predictions made and to study the feasibility of
a more robust algorithm based on the topology of the
cost functions. The paper ends with the conclusions of
the work.

2. Background and Prerequisite

2.1. Model and Notations

In this paper, we denote the estimated parameters with
the hat symbol ( ˆ ) and errors in the estimated param-

eters with the subscript e (where error of any estimate
s is defined as se = s − ŝ). We use bold lower-case
character to denote vector and bold upper-case char-
acter to denote matrix. Unless otherwise stated, vec-
tors are column vectors. Given a n-vector s, [s]m is
defined as the m-vector which consist of the first m
(m < n) components of s, s is defined as the (n + 1)-
vector with 0 added as the last component, and s̄ is the
associated skew-symmetric matrix of s. The symbol
(·) represents the dot product of vectors. For any vec-
tor s = (s1, s2)T , s⊥ represents the vector (s2, −s1)T

which is perpendicular to s with the same magnitude.
The symbol (‖‖) represents the Euclidean norm of a
vector and the symbol (| |) the absolute value of a
variable.

A pinhole camera model with perspective projec-
tion is assumed as shown in Fig. 1; it is moving with a
translational velocity v = (U, V, W )T and a rotational
velocity w = (α, β, γ )T . A point P in the world pro-
duces an image point p in the image plane which is f
pixels away from the optical center; if P = (X, Y, Z )T

and p = (x, y, f )T are the co-ordinates corresponding
to P and p respectively, we have: p = f P

Z . The focal
length f is assumed to be known since we are dealing
with calibrated motion in this paper.

The image velocity due to camera motion is given
by the following familiar equation (Longuet-Higgins,
1981):

ṗ = −Qp

(
v
Z

+ w̄p
)

(1)

Figure 1. The image formation model.
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where

ṗ = (u, v, 0)T , Qp =




f 0 −x

0 f −y

0 0 0


 .

Equation (1) can alternatively be written in terms of
its components as:

u = utr

Z
+ urot

= (x − x0)
W

Z
+ αxy

f
− β

(
x2

f
+ f

)
+ γ y

(2)
v = vtr

Z
+ vrot

= (y − y0)
W

Z
+ α

(
y2

f
+ f

)
− βxy

f
− γ x

where (x0, y0) = ( f U
W , f V

W ) is the focus of ex-
pansion (FOE). We define ṗtr = (utr , vtr)T and
ṗrot = (urot, vrot)T , where ṗtr

Z and ṗrot are the compo-
nents of the flow due to translation and rotation respec-
tively. Since only the direction of the translation can
be recovered from the flow field, we can set W = 1
for the case of general motion; the case of pure lat-
eral motion (W = 0) will be discussed separately where
required.

2.2. 3-D Motion Estimation

2.2.1. Discrete Case. The SFM problem in the dis-
crete case amounts to the estimation of the fundamen-
tal matrix F (or the Essential matrix E if the camera is
calibrated) based on a sufficiently large set of point cor-
respondences. The geometry of the discrete two-image
motion analysis has been well studied and is succinctly
captured by the epipolar equation:

p1Fp2 = 0 (3)

where p1 and p2 are the corresponding points on the two
images and F is the fundamental matrix. The geomet-
ric meaning of the epipolar equation is that p1 must lie
on the epipolar line of p2 given by Fp2. Directly min-
imizing Eq. (3) leads to a closed-form solution whose
results are sensitive to noise. It was also argued (Zhang,
1998) that this optimization criterion does not totally

reflect the epipolar geometry and thus is not physi-
cally meaningful. A couple of non-linear optimization
criteria were thus proposed. Three criteria are derived
based on: distance between points and epipolar lines,
gradient-weighted epipolar errors and distances be-
tween points and their reprojections. The correspond-
ing cost function are denoted as JD1, JD2 and JD3 re-
spectively. The geometric meanings of JD1 and JD3

are obvious from their names, whereas JD2 is obtained
based on the following statistical consideration: When
independent and identically distributed Gaussian noise
is assumed, minimizing the Mahalanobis distance be-
tween points and epipolar lines gives rise to JD2. While
JD3 has obvious geometric meaning, it also possesses
a statistical interpretation: It corresponds to the case of
optimizing based on the maximum a posterior (MAP)
principle under the same noise model. Zhang (1998)
studied the relationship between these three criteria
under different motion configurations. JD2 was recom-
mended since it is equivalent to JD3 under most con-
figurations and yet is computationally more efficient.
Ma et al. (2001) investigated the behavior of different
criteria with and without noise. Similar to Zhang’s re-
sults, these criteria were shown to be intimately related
and were unified under a new “optimal triangulation”
procedure (our proposed unifying scheme for the dif-
ferential case is similar in idea).

2.2.2. Differential Case. A motion estimation algo-
rithm based on the differential epipolar constraint can
be developed analogous to the discrete case, from
which the following cost function can be obtained
(Brooks et al., 1997):

JE1 =
n∑

i=1

(
pT

i
¯̂vṗi + pT

i
¯̂v ¯̂wpi

)2
(4)

where n is the number of image velocity measurement.
As discussed before, we first focus on the case where
the optical flow input was noise-free; thus we have
used the term ṗi in (4). The actual case of the optical
flow containing noise component would be addressed
in later sections.

The geometric meaning of JE1 is that in the im-
age plane the vector [ṗi ]2 − ˆṗroti (the de-rotated flow)
should be parallel to the vector ˆṗtri , or equivalently,
perpendicular to ˆṗ⊥

tri
. Thus the cost function JE1 can
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also be expressed as:

JE1 =
n∑

i=1

((
[ṗi ]2 − ˆṗroti

) · ˆṗ⊥
tr i

)2
(5)

Minimizing the preceding amounts to a linear opti-
mization problem which can be solved by a linear least
square method. However, it faces the same problem as
its discrete counterpart. A well-studied bias of the lin-
ear algorithms is that the estimated translation will be
biased towards the image center. In view of this bias,
a statistically more adequate implementation of the
differential epipolar constraint should be:

JE2 =
n∑

i=1

( (
[ṗi ]2 − ˆṗroti

) · ˆṗ⊥
tri∥∥[ṗi ]2 − ˆṗroti

∥∥∥∥ ˆṗ⊥
tri

∥∥
)2

=
n∑

i=1

(sin θi )
2 (6)

where θi is the angle between ˆṗtri and [ṗi ]2 − ˆṗroti .
The counterpart of JE2 in the discrete case would

be JD1. Both of them are non-linear and involve heavy
computation to obtain their solutions. Like the discrete
case, there are a variety of other non-linear methods
which are basically different weighted versions of JE1

each driven by slightly different considerations. Some
of these methods derived the weight based on a sta-
tistical analysis of noise (Kanatani, 1993; Ma et al.,
2000). For instance, Ma et al. (2000) presented a nor-
malized epipolar constraint which would yield MAP
estimates given an independent and identically dis-
tributed Gaussian noise:

JE3 =
n∑

i=1

(
pT

i
¯̂vṗi + pT

i
¯̂v ¯̂wpi∥∥ ˆṗtri

∥∥
)2

(7)

Others like Brooks et al. (1998) presented an algebraic-
geometric point of view: the hyperpoint [pi , ṗi ]T

should lie on the hypersurface pT
i

¯̂vṗi + pT
i

¯̂v ¯̂wpi = 0.
Like the gradient-weighted epipolar error in the dis-
crete case, they proposed a cost function which min-
imizes the first order approximation of the Euclidean
distance between the hyperpoint and the hypersurface:

JE4 =
n∑

i=1

(
pT

i
¯̂vṗi + pT

i
¯̂v ¯̂wpi

)2

‖2 ¯̂v ¯̂wpi + ¯̂vṗi‖2 + ‖ ¯̂vpi‖2
(8)

This cost function is very similar to Kanatani’s renor-
malization criterion (Kanatani, 1993) which is based
on statistical consideration.

As in the discrete case, one can ask what is the ge-
ometric meaning of these various criteria, beside their
statistical interpretation? The differential reprojection
criterion to be developed later allows us to answer this
question.

2.3. Depth Estimation

3-D motion estimation is regarded as the first step to-
wards the full recovery of 3-D shape information from
2-D measurements. Therefore any error in the 3-D mo-
tion estimates will systematically affect the perceived
space. However, the reliability of the depth estimates
could have quite different behavior from that of 3-
D motion estimates. That is, motion-scene configu-
ration that allows robust motion recovery may yield
less than desirable depth estimates, and vice versa. An-
other substantive question is of course, whether there
is any interaction between the errors in the motion es-
timates and the corresponding distortion in the recov-
ered depth. That is, would the distortion in the per-
ceived space in turn affect motion estimation? Partially
to address these questions, the iso-distortion frame-
work was introduced in Cheong et al. (1998). Let us
first revisit some notations that would be useful for this
paper.

2.3.1. Iso-Distortion Framework. The iso-distortion
framework seeks to understand the geometric laws un-
der which the recovered scene is distorted due to some
errors in the estimated motion parameters. The distor-
tion in the perceived space is visualized by looking
at the locus of constant distortion, known as the iso-
distortion surfaces.

From Eq. (1), the reconstructed depth can be ex-
pressed using the estimated motion parameters:

Ẑ = − v̂T QT
p n(

ṗT − pT ¯̂wQT
p

)
n

(9)

where n is a unit vector in the image plane representing
a direction. In general, when the estimated motion pa-
rameters contain errors, different choices of n will give
rise to different reconstructions. One possibility is to re-
cover depth by setting n to be along the estimated epipo-
lar direction, which is the direction pointing from the
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image feature point to the estimated FOE; this scheme
is heretoforth named as the “epipolar reconstruction”
scheme. It is based on the intuition that the epipolar
direction contains the strongest translational flow and
hence represents the best direction for depth recovery.
Another possibility is to let n be the image intensity
gradient direction, based on the intuition that the nor-
mal flow can be recovered reliably. Various other pos-
sibilities exist, each can be given different geometric
or statistical interpretation.

Substituting the expression for the true flow ṗT (us-
ing Eq. (1) again) into Eq. (9), we have:

Ẑ = Z

( −v̂T QT
p n

−vT QT
p n + Z

(
pT w̄eQT

p n
))

(10)

From the above equation we can see that Ẑ is related
to Z through a multiplicative factor given by the terms
inside the bracket, which we denote by D and term as
the distortion factor:

D = −v̂T QT
p n

−vT QT
p n + Z

(
pT w̄eQT

p n
) (11)

For specific values of v, v̂ and we and for any
fixed distortion factor D, Eq. (11) describes a surface
g(x, y, Z ) = 0 in the xy Z -space, which we call an iso-
distortion surface. This iso-distortion surface has the
obvious property that points lying on it are distorted
in depth by the same multiplicative factor D. The sys-
tematic nature of the distortion can then be made clear
by looking at the organization of these iso-distortion
surfaces.

The geometric laws for distortion can also be char-
acterized algebraically as a distortion transforma-
tion from the physical space to the perceived space.
In general, the resulting distortion transformation is
a Cremona transformation (Cheong and Ng, 1999)
whose properties are quite complex. However, under
special cases, as are some of the ambiguity cases to
be discussed later, the transformation reduces to that
of the projective transformation with some nice depth
properties.

2.3.2. Depth Error Sensitivity Under Different
Motion Configurations. The iso-distortion frame-
work has been used to seek some generic motion types

that rendered depth recovery more robust and reliable
(Cheong and Xiang, 2001). Lateral and forward mo-
tions were compared both under calibrated and uncali-
brated scenarios. The fundamental conclusions are that
under lateral movement (possibly coupled with rota-
tion) and certain conditions, while it might be very dif-
ficult to resolve the ambiguity between translation and
rotation, ordinal depth can be recovered with robust-
ness, whereas for forward motion, the depth recovery
is too sensitive to errors to admit meaningful scene re-
construction.

The preceding conclusions were established without
imposing any constraints on the motion error. However,
it is evident that the values of these motion errors are
not arbitrary. Rather, ambiguities inherent in the SFM
algorithms are likely to impose further constraints on
these motion errors. Given these errors, what can be
said about the distortion in depth given any types of
translational motion? This will be addressed in the next
section.

3. Differential Reprojection Criterion
and its Error Surface

3.1. Differential Reprojection Criterion

From the geometric standpoint, the differential epipo-
lar constraint in Eq. (4) is a “weak” constraint in
the sense that it can be satisfied by any two vectors
([ṗi ]2 − ˆṗroti ) and ˆṗtri that are parallel to each other.
There is no requirement on the magnitudes of the
two vectors although the true estimate should satisfy:
[ṗi ]2 − ˆṗtr i

Ẑ
− ˆṗroti = 0. Thus a “stronger” and more

adequate criterion based on the idea of reprojection
is proposed; it is based on the difference between the
original optical flow and the reprojected flow obtained
via a backprojection of the reconstructed depth. It is
thus analogous to JD3 in the discrete case. Further-
more, similar to Ma et al.’s “optimal triangulation” in
the discrete case (Ma et al., 2001), we will see in this
section that this criterion unifies the various weighted
versions of the differential epipolar constraint and also
lends a geometric interpretation to the weights used.
More importantly it allows us to develop a geometric
treatment of the motion ambiguity conditions, as we
shall see in Section 3.2.

Substituting the recovered depth in Eq. (9) into
Eq. (1), we obtain the reprojected (estimated) flow field,
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denoted by ˆ̇p, as follows:

ˆ̇p = Qpv̂
(
ṗT − pT ¯̂wQT

p

)
n

v̂T QT
p n

− Qp ¯̂wp (12)

The difference between the original optical flow and
the reprojected flow can thus be expressed as:

ṗe = ṗ − ˆ̇p

=
(
C1 − CT

1 + C2 − CT
2

)
n

v̂T QT
p n

= Cn
v̂T QT

p n
(13)

where C1 = ṗv̂T Qp, C2 = Qp ¯̂wpv̂T QT
p , C = (C1 −

CT
1 + C2 − CT

2 ) and C1, C2, C are all 3 × 3 matrices.
It can be easily shown that C is a skew-symmetrical
matrix. Thus we have:

nT Cn = 0

The above equation implies that along n, the direction
of depth recovery, the reprojected flow ˆ̇p has exactly
the same component as the original optical flow ṗ. As
a consequence:

‖ṗe‖ = ∣∣ṗT
e n⊥∣∣ (14)

If we define a cost function JR based on the reprojected
flow difference, it can be written as:

JR =
n∑

i=1

( ‖Ci ni‖
v̂T Qpi

T ni

)2

Using Eq. (14), JR can be written as:

JR =
n∑

i=1

(
ni

T Ci ni
⊥

v̂T Qpi
T ni

)2

=
n∑

i=1

(
pT

i
¯̂vṗi + pT

i
¯̂v ¯̂wpi

v̂T Qpi
T ni

)2

(15)

A comparison of Eq. (4) with Eq. (15) reveals the rela-
tionship between JR and JE1: JR is a weighted version
of JE1 with the weight given by the projection of ˆṗtri on

the direction ni . It follows that JR can also be written
as:

JR =
n∑

i=1

( ˆṗtri · (
[ṗi ]2 − ˆṗroti

)⊥

ˆṗtri · ni

)2

(16)

Various weighted differential epipolar constraints
differ mainly in the choice of n. Possible choices
of n include the “epipolar reconstruction” direction
(n = ˆṗtr

‖ ˆṗtr ‖ ), which results in JE3, gradient direction
(the normal flow approach), or the Linear Least Square
Reconstruction (LLSR) direction.1 Other more sim-
plistic choices include constant direction, random di-
rection, etc.

It follows that while the formulation of the differen-
tial reprojection criterion JR is motivated by the need
to have a stronger geometric constraint, it often has
statistical meaning too. Furthermore JR can be seen as
a scheme unifying the various weighted epipolar con-
straints. It follows that to understand the behavior of
these SFM algorithms based on weighing the epipo-
lar constraint, one can focus on studying the differen-
tial reprojection criterion. All these algorithms inherit
properties from the differential reprojection criterion;
in particular, much of the ambiguity conditions of these
algorithms are common and can be studied by looking
at the numerator of JR .

3.2. Analyzing from a Geometric Point of View

To analyze how various factors, such as motion types,
field of view, feature and depth distribution, govern
the formation of motion ambiguities (or equivalently,
the local minima in the error surface described by JR),
we need to express JR in terms of the various compo-
nent errors in the 3-D motion estimates. This allows us
to obtain a more obliging form for analyzing in more
specific details the ambiguity behavior over a wide
range of conditions. Substituting [ṗi ]2 = (ui , vi )T =
( xi −x0

Zi
+ uroti ,

yi −y0

Zi
+ vroti )

T , ˆṗtri = (xi − x̂0, yi − ŷ0)T

and ˆṗroti = ( ˆuroti , ˆvroti )
T into (16), we have:

JR

=
∑ (

(x − x̂0, y − ŷ0) · (
vrote − y0e

Z ,
x0e
Z − urote

)
(x − x̂0, y − ŷ0) · n

)2

(17)



Understanding the Behavior of SFM Algorithms 119

where

(
x0e , y0e

) = (x0 − x̂0, y0 − ŷ0)(
urote , vrote

) =
(

αexy

f
− βe

(
x2

f
+ f

)
+ γe y,

αe

(
y2

f
+ f

)
− βexy

f
− γex

)

For notational convenience, we omit the subscript i in
the expression of JR ; it is understood that the sum-
mation runs over all feature points. To facilitate dis-
cussion, we also introduce the following notations. We
denote the expression contained in the outer bracket of
(17) as ṗe(v̂, v, we) (where the dependence of ṗe on
the motion errors has been made explicit), and the vec-
tors (x − x̂0, y − ŷ0)T and (vrote − y0e

Z ,
x0e
Z − urote )

T as
t1 and t2 respectively (it is indeed the interaction be-
tween t1 and t2 that accounts for much of the inherent
motion ambiguities). We also adopt the terminology
that for the vectors t1 and t2, t1,n and t2,n denote the
nth order component with respect to x and y; thus we
have:

{
t1 = t1,0 + t1,1

t2 = t2,0 + t2,1 + t2,2 + t2,Z
(18)

where t1,0 = (−x̂0, −ŷ0)T , t1,1 = (x, y)T , t2,0 =
(αe f, βe f )T , t2,1 = (−γex, −γe y)T and t2,2 =
(αe

y2

f − βe xy
f , − αe xy

f + βe
x2

f )T . The last item t2,Z in
the above equation denotes the depth dependent term
(− y0e

Z ,
x0e
Z )T . The depth Z may be dependent on x and

y in a complex manner; thus we use the notation t2,Z

and leave the order unspecified.
To visualize the residual error surface, it is eas-

ier to deal with a 3-dimensional surface. We use for
this purpose the translation error surface, which is de-
scribed parametrically with two free variables, the es-
timated FOE (x̂0, ŷ0). We know that given this hy-
pothesized FOE, the rotation variables can be solved
in terms of the estimated FOE so as to minimize
JR . The residual error JR can thus be obtained for
each FOE candidate, describing the entire residual
surface completely. Unless otherwise stated, the er-
ror surface in this paper refers to this type of error
surface.

We first make some assumptions on the distribution
of feature points and depth. We assume that the fea-
ture points are evenly distributed in the image plane, as

is the distribution of the “depth-scaled feature points”
( x

Z ,
y
Z ). The latter assumption generally requires that

the distribution of depths are independent of the cor-
responding image co-ordinates x and y. Later we will
see how the error surface will be affected when these
assumptions do not hold.

3.2.1. Several General Observations. Equation (17)
shows that for any given data set (x, y, Z ), the residual
error is a function of the true FOE (x0, y0), the estimated
FOE (x̂0, ŷ0) and the error in the rotation estimates
(αe, βe, γe). Evidently, ambiguities would arise when
the errors in the motion estimates satisfy the follow-
ing conditions to make the numerator of ṗe(v̂, v, we)
vanish: (1) making ‖t2‖ small and (2) making t1 and
t2 perpendicular to each other. The second condition is
generally not satisfiable at all points of the image; thus
making ‖t2‖ small (condition one) contributes towards
ambiguity. Making ‖t1‖ small does not contribute to-
wards ambiguity if we have suitably normalized JR

with the term in the denominator. We thus can make
the following observations:

1. When the estimated FOE moves towards infinity,
the direction of t1 approaches that of t1,0, which
is constant. Pointing towards a constant direction
represents a necessary condition for t1 and t2 to be
perpendicular to each other.

2. From the expression of t2, we can see that t2,0 and
t2,Z are pointing towards constant directions for all
the feature points. Intuitively, t2 will be more per-
pendicular to t1 when both t2,0 and t2,Z are perpen-
dicular to t1,0. This relationship can be illustrated
with the diagram shown in Fig. 2. The vector t1,1

can be regarded as a perturbation to the vector t1,0,
and similarly, t2,1 and t2,2 can be regarded as per-
turbations to t2,0 and t2,Z. However, if the feature
points are sufficiently evenly distributed (such that
the vectors t1,1 are evenly spread on either side of
t1,0 and the sum of vectors t2,1 and t2,2 are evenly
spread on either side of t2,0 and t2,Z), and the distri-
bution of depth Z is symmetrical with respect to the
t1,0 direction, then making t2,0 and t2,Z perpendicu-
lar to t1,0 is a reasonable choice for the minimization
of JR .

Thus we have

x0

y0
= x̂0

ŷ0
(19)
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Figure 2. Geometry of t1 and t2.

and

αe

βe
= − ŷ0

x̂0
(20)

Equation (19) imposes a constraint on the direc-
tion of the estimated translation, namely, the three
points (x̂0, ŷ0), (x0, y0) and (0, 0) should lie on
a straight line. We henceforth refer to this con-
straint as the Translation Direction (TDir) con-
straint. Equation (20) imposes a constraint on the
direction of we, which shall be henceforth re-
ferred to as the Rotation Error Direction (RDir)
constraint.

3. Since t1 cannot be made exactly perpendicular to t2,
small ‖t2‖ will help to reduce the numerator term
of JR . Obviously, small ‖t2‖ can be achieved by
having small errors in the motion estimates. Alter-
natively, since t2,0 and t2,Z are pointing towards
constant direction, they can be made to approx-
imately cancel off each other by an appropriate
choice in the errors in the motion estimates, which
is:




αe = y0e

Zavg f

βe = − x0e

Zavg f

(21)

where Zavg is the average scaled depth of the scene
in view. In view of its constraint on the magnitude
of we, we refer to this constraint as the Rotation
Magnitude (RMag) constraint, although it also im-
plies directional constraint given by αe

βe
= − y0e

x0e
.

Comparing with (20), it is evident that RDir and
RMag can hold simultaneously only if TDir also
holds. Note that an exact cancelation of t2,0 and t2,Z

is impossible unless the scene can be modeled as a
frontal-parallel plane.

4. t2,1 and t2,2 are determined by γe and αe, βe respec-
tively. Under general scene, there is no way for t2,1

and t2,2 to be canceled off with other terms; ‖we‖ has
to be small for t2,1 and t2,2 to be small. In this sense,
t2,1 and t2,2 contribute to accurate estimation of ro-
tation; unfortunately, their effects are weak unless
the field of view is large. In view of the subsidiary
role of the constraint it exerts on the magnitude of
the rotation errors, we term it as RMag2 constraint.
Another important fact about t2,2 is that it will be ex-
actly perpendicular to t1 (independent of the feature
points co-ordinates) when t1,0 = (0, 0). Therefore,
RMag2 constraint will be ineffective on the magni-
tude of αe and βe when the estimated FOE coincides
with the origin.

From the preceding observations, we can establish
the following conclusions:

1. Translation estimates. One of the well known phe-
nomenon in motion perception is the bas-relief am-
biguity. Basically it amounts to a valley on the trans-
lation error surface, along a straight line that is de-
fined by the true FOE and the image center. We term
this straight line the bas-relief line and this valley
the bas-relief valley. TDir is the direct reason for the
formation of such a valley.

2. Rotation estimates. Of the three rotational esti-
mates, any error in γ̂ would have purely deleteri-
ous effect on the minimization of ‖ṗe(v̂, v, we)‖.
Thus, in the case of noiseless flow field, we ex-
pect accurate estimation of γ (those experienced
in the art of the SFM algorithms will know that
this is often not the case in numerical practice).
The effects of αe and βe on the residual error are
more complex. On the one hand, given a FOE er-
ror, αe and βe that satisfy the RMag constraint
can make ‖t2‖ small, thus leading to small resid-
ual error. On the other hand, the RMag2 constraint
would prefer αe and βe to be small. Furthermore,
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a FOE estimate that is close to the origin weak-
ens the RMag2 constraint on αe and βe. These ef-
fects will determine the values of the rotation esti-
mates that minimize JR , and the rotation estimates
will in turn influence the shape of the bas-relief
valley.

3.2.2. Error Profile Along the Bas-Relief Valley. We
have established in the preceding section the existence
of the bas-relief valley; the variation of the error along
the bas-relief valley itself is the subject of this sec-
tion. First and foremost, the location of the true FOE
has a critical influence on the shape of the bas-relief
valley and this in turn has implication for any motion
algorithm trying to deal with a wide range of trans-

Figure 3. Configuration within the bas-relief valley when the true FOE is out of the image plane. (a) Overall configuration in the image plane;
along the bas-relief valley, we divide it into regions 1, 2, and 3 as shown. (b), (c), and (d) show the residual errors along the bas-relief valley with
increasing amount of lateral translation. The dashed line represents the ‖ṗe(v̂, v, we)‖2 curve for a particular point, the dotted line the RotComp
curve, and the solid line the overall JR curve.

lational motion. We will use an example to elucidate
the influence of the true FOE location. Figure 3(a)
illustrates the case where the true FOE (x0, y0) lies
somewhere in between the image center and infinity.
The dotted line in the figure corresponds to the bas-
relief valley. As the estimated FOE leaves the true FOE
and moves along the bas-relief valley, we can identify
several factors that influence the outcome of Eq. (17)
for JR .

1. Translational error. Consider first the effects of
the translational terms by setting the rotational er-
rors to zero. As we vary the estimated FOE along
the bas-relief valley, we study the ‖ṗe(v̂, v, we)‖2

curve for a single feature point (x, y). As shown by
the dashed curve in Fig. 3(b), there would be two
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turning points on the curve; they correspond to a
minimum where the estimated FOE coincides with
the true FOE, and a maximum whose location de-
pends on the value of (x, y). In particular, it can
easily be shown (Xiang, 2001) that the location of
the maximum depends on the position of the pro-
jection of (x, y) on the bas-relief line relative to the
true FOE; if it falls on the left side of the true FOE,
the maximum will be on the left, and vice versa.
Finally, it is also clear that as the estimated FOE ap-
proaches infinity on either end of the bas-relief line,
the curve would approach asymptotically towards a
constant value. The total effect of the translational
terms would be obtained by summing up all the
‖ṗe(v̂, v, we)‖2 curves for each feature point. Let
us denote this summed curve as the TrErr (Trans-
lational Error) curve. In this particular example of
Fig. 3(a) (and for most true FOE not near the im-
age center), all (or most of) the feature points have
their projections on the bas-relief line lying on one
side of the true FOE. Thus, all the individual curves
would have maxima lying on one side of the true
FOE. As a result, the TrErr curve would have shape
similar to that of the individual curve. That is, it
would have an overall maximum on the opposite
side of the true FOE with respect to the origin, and
when the estimated FOE approaches infinity on ei-
ther end of the bas-relief line, the residual value
would approach asymptotically towards a constant
value.

The asymptotic value at infinity will be largely
determined by the types of true translation. Pre-
dominantly lateral motion causes low asymptotic
value (see dashed curves in Fig. 3(c) and (d)),
with the latter approaching zero as the trans-
lational motion approaches that of pure lateral
motion.

2. Rotational error. How do the rotation parameters
enter the picture? If these parameters could be esti-
mated accurately, the SFM problem would be sim-
ple. The error profile along the bas-relief valley
would be represented by the TrErr curve. In partic-
ular, there would be no local minimum within the
bas-relief valley. However, it is precisely the cou-
pling of the rotation with the translation that results
in local minima within the bas-relief valley. By cou-
pling, we mean that the residual error caused by
the translational errors can be compensated for by
a suitable choice of αe and βe. Figure 3(b) to (d)
show this compensating capability of αe and βe

along the bas-relief line by the dotted curves, where
high values on the curves indicate that the compen-
sation is highly effective. We denote these dotted
curves as the RotComp (Rotation Compensation)
curves.

Referring to Fig. 3, as the estimated FOE de-
parts from the true FOE and enters region 1, the
RMag constraint is operative and works towards
compensating the translation error. However, as
‖(x0e , y0e )‖ increases, two factors restrict the ap-
plicability of the RMag constraint. Firstly, the cor-
responding increase of αe and βe means that ‖t2,2‖
increases, that is, RMag2 constraint comes to the
fore, which works against the minimization of JR .
Secondly, as t1 approaches more and more towards
the direction perpendicular to t2,0 and t2,Z, there
is less advantage to be gained from the cancela-
tion of the t2,0 and t2,Z terms, as long as the di-
rectional constraints TDir and RDir are observed.
The resulting RotComp curve in region 1 is such
that it increases firstly, then decreases asymptoti-
cally towards zero. As the estimated FOE departs
from the true FOE in the other direction and en-
ters region 2, RotComp would increase first, as
in the case of the beginning of region 1. As long
as RMag2 is not operative yet, the RotComp is
able to follow in tandem the rapid increase of the
TrErr curve and therefore to compensate the lat-
ter. As the estimated FOE enters region 3, RMag2
takes effect again. Furthermore t1 becomes more
perpendicular to t2,0 and t2,Z thus obviating the
need for the RMag constraint. Thus the RotComp
curve again decreases asymptotically towards
zero.

3. Formation of local minimum. The final JR curve as
a result of this coupling between the rotation and
the translation would be equal to the subtraction of
RotComp curve from the TrErr curve as shown in
Fig. 3(b) to (c) (the solid curve). Clearly, it is due
to the sharp drop-off of the TrErr curve as well as
the compensatory effect of the rotational terms that
a local minimum forms on the opposite side of the
true FOE. We call this minimum the opposite min-
imum because it always lies on the opposite side of
the true FOE. It is located around where the Rot-
Comp curve starts to enter region 3, that is, where
the RotComp curve is no longer able to follow the
TrErr curve. Figure 3(d) illustrates the case where
the true FOE is further out (though not at infin-
ity); here the opposite minimum has already been
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pushed to infinity at the other end of the bas-relief
valley.

4. Factors affecting local minimum. The exact loca-
tion and the “depth” of the local minimum depends
on various factors discussed below:

• The type of the true translation affects the shape
of the TrErr curve, specifically its maximum loca-
tion and the asymptotic values. In general, largely
lateral translations present a more difficult sce-
nario for most SFM algorithms, because at the op-
posite end of the bas-relief valley, t1 and t2 will be
almost entirely perpendicular, resulting in small
asymptotic value of JR . The location of the oppo-
site minimum will approach infinity with residual
value approaching zero. A large part of the bas-
relief valley becomes very flat, thus presenting a
highly ambiguous situation (Fig. 4(b)). Further-
more, as far as rotation estimates are concerned, in
the limiting case of pure lateral motion, the RMag
constraint fails to exert any constraint on the mag-
nitude of αe and βe. The reason is as mentioned
before: t1 and t2 can be in this case made per-
pendicular to each other at all points through the
TDir and RDir constraints; the RMag constraint,
which makes t2 small, becomes redundant.

Conversely, if the true FOE approaches that
of the pure forward motion case, the opposite
minimum will merge with the true solution and
disappear as shown in Fig. 4(a).

Figure 4. Error profiles of the bas-relief valley in the limiting cases. (a) The true FOE coincides with the origin and (b) The true FOE lies at
infinity.

• Field of view determines the effectiveness of
the RMag2 constraint. With other conditions
fixed, small FOV is a favorable condition for
the formation of the opposite minimum. The
later the RMag2 constraint sets in, the longer
the RotComp curve are able to follow the TrErr
curve. Thus the opposite minimum will form
further away from the origin, and the residual
error JR will be smaller in value (though the
valley around this local minimum may be less
steep), making it more likely for the opposite
minimum to be picked up as the solution.

• Focal length. A change of focal length brings
about several effects. Firstly, the values of αe and
βe as dictated by the RMag constraint will be
smaller. This in turn means that all the t2,2 terms
will be reduced in magnitude, both due to the
smaller αe and βe and the larger f value in the de-
nominator. Lastly, the true FOE ( f U

W , f V
W ) will

edge towards infinity with a larger f . All these
factors will push the opposite minimum further,
as well as making it more conducive for the
opposite minimum to be picked up as the solution.

• Unweighted epipolar constraint. Finally, it should
be mentioned that if the epipolar constraint is un-
weighted, it can be shown that there will no max-
imum in the TrErr curve. Clearly, the resultant
coupling with the RotComp curve would yield a
minimum in the error surface near the center of
the image, a result well-known in the literature.
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3.2.3. Relaxation of the Assumptions on the
Distribution of Feature Points and Depth. In the be-
ginning of this section, we made some assumptions
on the distribution of feature points and depths, which
are necessary for the derivation of the preceding re-
sults, especially the formation of the bas-relief val-
ley. It is important to know how the error surface
would be affected when these assumptions do not
hold.

1. Uneven feature point distribution. We first consider
the case where the feature points are not evenly dis-
tributed (with the assumption on the depth distribu-
tion still valid). We can model one aspect of uneven
distribution by a shift of the centroid of the feature
points from the image center to the point (x̃, ỹ).
Since t2,1 is always parallel to t1,1 and t2,2 is always
perpendicular to t1,1, the contributions of these two
components of t2 to the error surface will not be
affected by the distribution of the feature points.
However, to make the remaining components of
t2, which are (t2,0 + t2,Z), perpendicular to t1, the
TDir and RDir constraints need to be modified near
the region where the feature points are clustered as
follows:

(x0 − x̃)

(y0 − ỹ)
= (x̂0 − x̃)

(ŷ0 − ỹ)
(22)

and

αe

βe
= − (ŷ0 − ỹ)

(x̂0 − x̃)
(23)

respectively. As a consequence, the bas-relief val-
ley is attracted towards the new centroid when
it is in the vicinity of the feature points. How-
ever, when the estimated FOE approaches infinity,
the direction of t1 will be mainly determined by
t1,0; in other words, the bas-relief valley will be
very little affected by the shift of the feature cen-
troid. The resultant bas-relief valley is illustrated in
Fig. 5.

2. Feature point grouped in local clusters. Another as-
pect of unevenly distributed feature points is that the
feature points are grouped in local clusters. Here it
is well to mention the presence of critical points on
the error surface due to the vanishing of the denom-
inator of ṗe(v̂, v, we). In particular, these critical
points are formed when the estimated FOE coin-
cides with (x, y), at which both the numerator and

Figure 5. Geometry of the bas-relief valley when the distribu-
tion of feature points is uneven, with centroid at (x̃, ỹ). The solid
line corresponds to the bas-relief valley; the dashed line corre-
sponds to the bas-relief valley if the feature points are evenly
distributed; the dotted line is the line passing through (x̃, ỹ) and
(x0, y0).

the denominator vanish. These critical points may
also be caused by the n term in the denominator
being perpendicular to (x − x̂0, y − ŷ0), the value
of n being dependent on the adopted reconstruc-
tion schemes. Such critical points are the possible
sources of local minima or maxima. However, our
simulations in the next section show that they do not
have a significant effect on the overall error surface
as long as the feature points are evenly distributed.
However, when feature points are grouped in local
clusters, the surrounding error surface can be sig-
nificantly affected. In particular, each cluster may
cause shallow local minimum to form around the
cluster.

3. Uneven depth distribution. Another factor to con-
sider is that the depth is usually dependent on the
feature co-ordinates (x, y) in a complex way. Re-
ferring to Fig. 2, this depth dependency means that
the perturbation terms t1,1 = (x, y) and t2,Z =
(− y0e

Z ,
x0e
Z ) are correlated, or equivalently, ( x

Z ,
y
Z )

and (−y0e , x0e ) are correlated. Thus we can model
this dependency as a shift of centroid of the depth-
scaled feature points ( x

Z ,
y
Z ). It can be shown that

the effect of this shift on the bas-relief valley is
very similar to that caused by a shift of the fea-
ture points’ centroid. For example, if the depths
associated with the feature points at the upper-left
corner of the image plane are smaller than those
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of other feature points, the centroid of the depth-
scaled feature points will move toward the upper-
left corner. The location of the resulting bas-relief
valley will change as if the centroid of the fea-
ture points were shifted to the upper-left corner
(see Fig. 5).

4. Special case of planar scene. One special case of
depth dependency on the feature co-ordinates is
that of a plane, a case well studied by numerous
researchers such as Longuet-Higgins (1984). It is
simple but nevertheless capable of modeling many
real scene configurations. Longuet-Higgins showed
that if all the object points come from a plane which
is expressed as:

L X + MY + N Z = 1

the motion field caused in the image plane will
be identical to the motion field caused by another
plane:

U X + V Y + W Z = 1

moving with the translation (L , M, N ) and rotation
(α + V N − W M, β + W L −U N , γ +U M − V L).
That is, there now exists on the translation error sur-
face another minimum at the location ( f L

N , f M
N ).

One can relate this planar case to the case dis-
cussed in the preceding paragraph, where depth
dependency results in a shift of the centroid of
the depth-scaled feature points ( x

Z ,
y
Z ). Substitut-

ing the planar equation for Z into ( x
Z ,

y
Z ), one can

show that the centroid of these depth-scaled fea-
ture points is now lying along the direction given
by ( f L

N , f M
N ). Thus, we would expect the origi-

nal bas-relief valley to be pulled towards this effec-
tive centroid ( f L

N , f M
N ). Indeed, as we will show

through simulation (Fig. 8) later, along the direc-
tion defined by the origin and the alternative FOE
( f L

N , f M
N ), the residual error surface also forms a

valley similar to the bas-relief valley (the bas-relief
valley of the alternative motion-scene configuration,
as it were). As expected, the two bas-relief valleys
will influence each other when they are near each
other. The estimates of the rotation will also be af-
fected by the existence of the alternative solution.
The RMag2 constraint will be modified since it is
now possible to partially cancel the t2,1 and t2,2

terms with the t2,Z term. The result is that while

large field of view still improves the estimation of
rotation due to the RMag2 constraint, we expect
larger errors to remain in the rotation estimates,
including that for the rotation around the optical
axis.

3.3. Depth Distortion at the Opposite
Minimum Solution

In this section, we attempt to investigate how the
reconstructed structure would be distorted when the
opposite-side minimum is picked up as the solution. In
particular, we investigate depth distortion under config-
urations favourable for the formation of such spurious
opposite minimum, namely, the FOV is small and the
translation is largely lateral. Rewriting the expression
of the distortion factor in Eq. (11) in terms of its com-
ponent error terms, we obtain:

D = (x − x̂0, y − ŷ0) · n

(x − x0, y − y0) · n + Z
(
urote , vrote

) · n
(24)

Under the aforementioned favourable conditions, we
are able to make two simplifications. Firstly, the con-
dition of small FOV allows us to ignore the second
order terms in urote and vrote . We also further assume
γe = 0 (under noiseless condition, we expect accu-
rate estimation of γ ). Secondly, given the large values
of x0, y0, x̂0, ŷ0 in this configuration, we make these
approximations: (x − x̂0, y − ŷ0) ≈ (−x̂0, −ŷ0) and
(x − x0, y − y0) ≈ (−x0, −y0). Equation (24) can then
be expressed as:

D = (−x̂0, −ŷ0) · n
(−x0, −y0) · n + Z (−βe f, αe f ) · n

(25)

We know that at the opposite minimum solution, the
TDir and the RDir constraints hold. These constraints
mean that the numerator and the denominator of the
above expression are parallel, and thus D is indepen-
dent of n, the direction of depth reconstruction. We can
now write D as

D = 1

λ1 + λ2 Z
(26)

where λ1 and λ2 are constant, with λ1 = −‖(x0,y0)‖
‖(x̂0,ŷ0)‖

(since (x0, y0) and (x̂0, ŷ0) are opposite in direction)
and λ2 = ±‖(−βe f,αe f )‖

‖(x̂0,ŷ0)‖ .
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A distortion factor with the form 1
λ1+λ2 Z gener-

ates iso-distortion surfaces which are frontal-parallel
planes. The resulting distortion transformation is that
of a relief transformation which has some nice proper-
ties (Koenderink and van Doorn, 1995). In particular,
consider two points in space with depths Z1 > Z2.
Given λ1 < 0, it can be shown (Cheong and Ng, 1999)
that depth order will be preserved when

(λ1 + λ2 Z1)(λ1 + λ2 Z2) < 0

Equivalently, since 1
λ1+λ2 Z is the distortion factor, the

above means that depth order will be preserved when
Ẑ1 Ẑ2 < 0, and conversely, depth order will be reversed
when Ẑ1 Ẑ2 > 0. In other words, if Ẑ1 Ẑ2 > 0, we
need to perform a depth order inversion to obtain the
correct depth order. Therefore, given the signs of two
recovered depths, we can always determine the correct
depth order. Of course, it remains open to question
if human actually performs the required depth order
inversion.

What can we say about the sign of λ2? If the RMag
constraint holds, then{

sign(−βe f ) = sign(−x̂0)

sign(αe f ) = sign(−ŷ0)
(27)

which means that λ2 is positive. Under such condi-
tion, the iso-distortion surfaces have the following ad-
ditional properties. The D = 1 distortion surface di-
vides the whole space into two parts: the near field in
which the space is expanded (D > 1) and the far field
in which the space is compressed (D < 1), with neg-
ative distortion factor in the region 0 < Z < − λ1

λ2
.

However, the sign of λ2 may be indeterminate when
the true FOE moves towards infinity (as does the op-
posite minimum). Here the RMag constraint weakens
and the RMag2 constraint is ineffective given the small
FOV. Under such limiting case, we cannot determine
the sign of λ2.

Before we close this section, a brief remark on the
case of translations close to the forward direction is
warranted. When the opposite-side minimum is picked
up as the solution, the distortion factor can be expressed
as:

D = (x − x̂0, y − ŷ0) · n
(x − x0, y − y0) · n + Z (−βe f, αe f ) · n

(28)

In such case, the distortion shows complicated behav-
ior described by the Cremona transformation. This is

in accordance with the view presented in Cheong and
Xiang (2001) that depth recovery is less reliable when
forward motion is executed.

3.4. Summary of Results and Discussion

Equation (17) has been critical in our analysis; its sim-
ple form renders possible the geometric treatment of the
error surface via a consideration of the two vectors t1

and t2. The error surface configuration and in particular,
the local minima on the surface which are the cause of
inherent ambiguity of SFM algorithms, are identified.
More importantly, the underlying mechanisms for the
formation of such local minima are also investigated
in a geometric way which is helpful towards obtaining
an intuitive grasp of the problem. The major findings
obtained so far are summarized as follows:

1. Rotation error. The rotation errors satisfy the fol-
lowing constraints: γe = 0 and αe

βe
= − ŷ0

x̂0
when mo-

tion ambiguities arise. The magnitude of the rota-
tion error may be further subject to the constraint
of αe = y0e

Zavg f and βe = − x0e
Zavg f , but this constraint

weakens as the true and the estimated FOE approach
infinity. In particular, when the estimated transla-
tion approaches infinity, the RMag constraint is not
needed anymore. Only the RMag2 constraint is op-
erative, which tends to make the rotation estimates
close to the true solution. Another influential factor
is FOV. Under large FOV, accurate rotation estima-
tion is expected. On the other hand, when FOV is
small, the rotation parameters are estimated with
difficulties.

2. Translation error. Bas-relief valley is the major
characteristic of the error surface; it is a line de-
fined by the true FOE and the centroid of the fea-
ture points. The distribution of the feature points
and the depth-scaled feature points will also af-
fect the location of the bas-relief valley. Along
the bas-relief valley, there is a local minimum at
the opposite side of the global minimum with re-
spect to the origin, which we called the opposite
minimum. The residual error along the bas-relief
valley also tends to have a local maximum some-
where near the origin and approaches an asymp-
totic value as the estimated FOE moves towards in-
finity. The location and the depth of the opposite
minimum is determined by several factors. In par-
ticular, the opposite minimum will be further away
from the image center and its residual value smaller
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when the FOV is small and the true translation is
largely lateral. This opposite minimum in the bas-
relief valley poses severe problem to most SFM
algorithms.

3. Depth distortion. If the SFM algorithms return the
opposite minimum as the solution, a distorted struc-
ture will be recovered. The behavior of such distor-
tion depends on the location of the opposite mini-
mum. If it is far away from the origin, the distor-
tion transformation between the physical and re-
constructed space belongs to relief transformation.
Depth order can be preserved if we perform the nec-
essary depth order inversion. In contrast, when the
opposite minimum is close to the origin and returned
as the solution, the depth distortion is complex and
can only be described by a full Cremona Trans-
formation. However it should be noted that if the
features and depths are evenly distributed, a SFM
algorithm taking proper precaution should be able
to avoid this kind of opposite minimum due to its
large residual error.

4. Type of translation. The type of translation has im-
portant influence on the configuration of the residual
error surface. Under largely forward translation, the
estimation of both translation and rotation is rela-
tively accurate unless the feature points are locally
clustered resulting in strong local minima within
the image plane. In contrast, the SFM algorithms
are more likely to give erroneous motion estimation
when the true translation is largely lateral. However,
as far as the depth recovery is concerned, transla-
tion that is largely lateral results in depth distor-
tion that has nice properties such as preservation of
relief.

5. Type of cost function. Different cost functions are
obtained by setting n to different directions. Since
the bas-relief ambiguity occurs when t1 and t2 are
roughly perpendicular to each other, making the nu-
merator of ṗe(v̂, v, we) vanish, different choices of
n has little influence on the formation of the bas-
relief valley on the error surface. However the shape
of the error surface, and in particular, the error pro-
file along the bas-relief valley, could be affected by
the different choices of n. Indeed, if n is not set as
the “epipolar reconstruction” direction, new local
extrema would be introduced on the error surface
when t1 is perpendicular to n for any feature point,
making the denominator of ṗe(v̂, v, we) vanish. For
instance, when n is set as a constant direction, there
will be a large number of local maxima and min-

ima, forming bands running roughly along the n⊥

direction. For the cases of n equal to constant di-
rection and n equal to Linear Least Square Recon-
struction direction, it can be shown that the opposite
minimum on the bas relief valley still persists. Last
but not least, it is also clear that the choice of n
would directly affect the properties of the recovered
depth.

6. Minimization strategy. There are many variants of
SFM algorithms based on the differential epipo-
lar constraint: Some estimates translation first and
then the rotation (Zhang and Tomasi, 1999; Horn,
1990; Adiv, 1985; Heeger and Jepson, 1992),
some estimates rotation first and then the transla-
tion (Prazdny, 1980), and others estimate all mo-
tion parameters simultaneously (Ma et al., 2000;
Kanatani, 1993; Brooks et al., 1998). As long as
the various algorithms are purely based on the
differential epipolar constraint, the results of our
analysis is applicable. For the algorithms that es-
timate the translation first based on other con-
straints such as the motion parallax (Rieger and
Lawton, 1985), we need to first characterize the er-
ror likely to exist in the estimated translation which
is beyond the scope of this paper. However, as-
suming an erroneous FOE has been obtained, we
know that the corresponding rotational errors will
satisfy αe

βe
= − V̂

Û
and γe = 0 if the feature points

and the depth-scaled feature points are distributed
evenly.

3.5. Experimental Analysis

3.5.1. Visualization of the Cost Functions. In this
section, we perform simulations on synthetic images
to both visualize and verify the predictions obtained
from the preceding theory. We also make additional
observations along the way, for instance, regarding the
influence of density of feature points on the residual
errors. These simulations were carried out based on
the “epipolar reconstruction” scheme.

As discussed in the preceding section, we use the
translation error surface for visualization purpose. At
each point on the plot, the FOE are fixed; then JR can
be expressed as:

JR =
n∑

i=1

(
c1i − (

c2i α̂ + c3i β̂ + c4i γ̂
)

δi

)2

(29)
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where

c1i = u(y − ŷ0) − v(x − x̂0)

c2i = xy

f
(y − ŷ0) −

(
y2

f
+ f

)
(x − x̂0)

c3i = xy

f
(x − x̂0) −

(
x2

f
+ f

)
(y − ŷ0)

c4i = x(x − x̂0) + y(y − ŷ0)

δi =
√

(x − x̂0)2 + (y − ŷ0)2

from which the rotation variables can be solved by a
typical linear least squares fitting algorithm such as the
SVD (singular value decomposition) method. We per-
formed this fitting for each fixed FOE candidate over
the whole 2-D search space and obtained the corre-
sponding reprojected flow difference JR . The residual
values were then plotted in such a way that the im-
age intensity encoded the relative value of the resid-
ual (bright pixel corresponded to high residual value
and vice versa). Furthermore, to illustrate the varia-
tion of JR along the bas-relief valley in details, we
also plot the cross-section of the residual error sur-
face along the bas-relief line. Three types of curves
were plotted for this purpose, namely, the residual er-
ror curve, TrErr, and RotComp as defined before, re-
spectively drawn in solid line, dashed line and dotted
line.

The imaging surface was a plane with a dimension
of 512 × 512 pixels; its boundary was delineated by
a small rectangle in the center of the plots. The resid-
uals were plotted over the whole FOE search space,
subtending the entire hemisphere in front of the image
plane. We used visual angle in degree rather than pixel
as the FOE search step; thus the co-ordinates in the
plots were not linear in the pixel unit. Unless other-
wise stated, the synthetic experiments have the follow-
ing parameters: the focal length was 512 pixels which
meant a FOV of approximately 53◦; there were 200 ob-
ject points whose depths ranged randomly from 512 to
1536 pixels; feature points were also distributed ran-
domly over the image plane; true rotational parameters
were (0, 0.001, 0.001).

We conducted experiments under the following con-
ditions: (1) varying amount of forward translation,
ranging from head-on to lateral motion; (2) small ver-
sus large FOV; (3) feature points distributed evenly over
the whole image plane versus those clustered at a cor-
ner; (4) depth-scaled feature points distributed evenly
over the whole image plane versus those clustered at

a corner; (5) sparse versus dense flow field; and (6)
planar scene versus random scene.

Figure 6 shows the residual error images for differ-
ent translations. It can be seen that the bas-relief valley
becomes more obvious when the translation changed
from being purely forward to being purely lateral. Since
the feature points distribution were (roughly) even, the
TDir constraint was a line passing through the image
center and the true FOE. This can be clearly seen from
Fig. 6(b)–(d) where the translation was not purely for-
ward. Distinct local minima were centered around the
true FOE and somewhere on the opposite side of the im-
age center. We also plotted the residual profiles along
the bas-relief valleys (note that the residual profiles
were plotted in terms of pixels, whereas the residual
error surfaces were plotted in terms of visual angles).
Apparently, the types of true translation had a signif-
icant influence on the formation of the opposite mini-
mum. The opposite minimum disappeared (or merged
with the global minimum) for pure forward motion
(Fig. 6(e)). As the global minimum moved towards the
infinity, so did the opposite minimum. The “false” min-
imum on the opposite side was much shallower than the
“true” minimum in the case of non-lateral motion, as
can be seen from Fig. 6(f), but in Fig. 6(h) under lateral
motion they are almost equal in depth. The residual
profiles also show clearly how the opposite minimum
was formed by the coupling of the RotComp curve and
the TrErr curve. By looking at the numerical values
of the simulation data, we also found that for all the
FOE candidates, the errors in the estimated rotational
parameters were such that Eq. (20) held (RDir con-
straint), while for the rotational estimates around the
opposite minimum, we further have their magnitudes
satisfying Eq. (21) (RMag constraint). Under lateral
motion (Fig. 6(d)), those candidates with the smallest
residuals were either the true translation or the transla-
tion in the opposite direction, while the estimated rota-
tion satisfied αe

βe
= − V

U . Not surprisingly, we found that
for these candidates, the magnitudes of we were quite
arbitrary (though small) since the RMag constraint is
ineffective. It may be noted in passing that from Fig. 6
the maxima on the residual error image tended to form
a strip perpendicular to the minima strip, and was more
prominent for the case of lateral motion.

Figure 7 shows the influence of FOV on the residual
error images. While examining these plots, it should
be kept in mind that in our simulations, larger FOV
was obtained by fixing the image size and decreasing
the focal length. Thus, under larger FOV the true FOE
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Figure 6. Residual error for different translations. Translational parameters (U, V, W ) for (a), (b), (c), and (d) are (0, 0, 2), (0.5, 0.5, 2) (1, 1, 1)
and (1, 1, 0) respectively. Figures (e), (f), (g), and (h) correspond to the residual profiles of the bas-relief valleys in (a), (b), (c), and (d) respectively.
The dashed, dotted, and solid curves respectively represent the TrErr, RotComp and Jr curves. The residual error surfaces were plotted in terms
of visual angles, whereas the residual profiles were plotted in terms of pixels.

Figure 7. Influence of the FOV on the residual error images. v = (1, 1, 1) for both (a) and (b); FOV was 28◦ for (a) and 90◦ for (b). Figures
(c) and (d) correspond to the residual profiles of the bas-relief valleys in (a) and (b) respectively. Notations as before.

( f U
W , f V

W ) would be closer to the image center with
the same translational velocity (U, V, W ). The oppo-
site minimum in Fig. 7(a) was prominent with small
residual value, while in Fig. 7(b), the opposite min-
imum was almost invisible (it was barely visible in
Fig. 7(d), being located at where the solid curve was
just rising towards the asymptotic value in the opposite
direction).

Figure 8 shows how the distribution of feature points
and depth-scaled feature points affect the residual er-
ror images. When the feature points were clustered
around different parts of the image, it was as if the
bas-relief valley were pulled by the centroid of the fea-
ture points. This was illustrated in Fig. 8(a) where the
feature points were clustered in the upper left corner of
the image plane. In Fig. 8(b), with sparse and randomly
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Figure 8. Influence of the distribution of feature points and depth-scaled feature points on the residual error images. (a) Feature points were
clustered within a corner highlighted by a gray rectangle; (b) 20 feature points were distributed randomly over the image plane. (c) Feature point
distribution was random over the image plane, whereas the depth distribution was such that the depth-scaled feature points were clustered at the
upper-left corner of the image plane; (d) All the object points came from a plane with (L , M, N ) = (−0.002, 0.002, 0.002). Figure 8(e) and (f)
correspond to the residual profiles of the bas-relief valley and the second bas-relief valley in (d) respectively. v = (1, 1, 1) for all the figures.

distributed feature points, the extrema caused by these
feature points can be seen to form around these fea-
ture points. Such local extrema always exist but their
effect was not significant if the feature points were suf-
ficiently dense, as can be seen from all the other residual
error images (with 200 feature points) in this section.
Figure 8(c) shows that the location of the centroid of the
depth-scaled feature points would also affect the for-
mation of the bas-relief valley. Here, the centroid of the
depth-scaled feature points was located at the upper left
corner of the image plane, resulting in an error surface
as if the feature points were centered in that region. The
case of a planar scene was illustrated in Fig. 8(d). There
were two clear minima, corresponding to the true and
the alternative solutions for the planar scene. In addi-
tion, as shown by the cross-section of the residual error
surface along the bas-relief valley in Fig. 8(e), the op-
posite minimum still exists. Another bas-relief valley

was also apparent along the direction defined by the al-
ternative FOE and the origin. Figure 8(f) shows that this
second bas-relief valley also has similar profile, that is,
it also has a local minimum on the opposite side of the
alternative FOE. Finally, the numerical values of the
simulation data show that, as predicted, the rotational
estimates no longer observed the RMag and the RMag2
constraints.

3.5.2. Inherent Ambiguities and Visual Illusions.
Our analyses in the preceding sections show that there
are various ambiguities inherent to the SFM problem
which may cause erroneous 3-D motion estimation and
distorted 3-D space reconstruction. The case of lateral
motion was particularly studied because it possesses
some unique properties. It is also a motion often found
in the biological world and a case heavily studied by
visual psychophysicists. In this section, we attempt to
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explain a well-known human visual illusion, the “rotat-
ing cylinder illusion” which is commonly observed in
psychophysical experiments. We attribute this illusion
to the imprecise estimation of the 3D motion caused
by the inherent ambiguities and the corresponding dis-
torted structure recovered from the erroneous motion
estimates.

3.5.2.1. Rotating Cylinder Illusion. In the psy-
chophysical experiments, the rotating cylinder illusion
amounts to the following situation: Dynamic random-
dot display representing a rotating cylinder occupies a
small portion of the visual field and rotates around a
vertical axis passing through the center of the cylin-
der, as shown in Fig. 9. It was found that sometimes
the cylinder (as well as other curved objects) was per-
ceived as rotating in a direction opposite to the true one
and the correspondingly perceived structure underwent
a change in the sign of curvature; that is a convex ob-
ject was perceived as concave and vice versa (Hoffman,
1998).

3.5.2.2. Explanations. Some computational models
have been proposed to explain the rotating cylinder il-
lusion (Koenderink and van Doorn, 1991; Soatto and
Brockett, 1998). Koenderink and van Doorn (1991) ar-
gued that since the solution of SFM under perspective
projection cannot explain the effect (there can be only
one solution), it could be that the human visual system

Figure 9. Configuration of the “rotating cylinder illusion”. Dy-
namic random-dot display representing a rotating cylinder rotates
about a vertical axis through its centroid with speed β0. The equiva-
lent egomotion for an observer positioned at o is given by (α, β, γ ) =
(0, −β0, 0) and (U, V, W ) = (β0 Z0, 0, 0) where Z0 is the distance
between the optical center and the centroid of the cylinder.

somehow adopts an affine projection model. Soatto and
Brockett (1998) attributed these illusions to the pres-
ence of noise.

A different view can be inferred from the standpoint
of our theory. Given the conditions present in that of the
rotating cylinder illusion (small FOV, lateral translation
and small depth range), all conducive towards the for-
mation of the opposite minimum, rotating cylinder illu-
sion can be attributed to the erroneous motion estimates
caused by the opposite minimum, or more precisely, the
error configuration with v̂ = −v, αe

βe
= − V

U and γe = 0.
Consider the case where β0 > 0, we have under the er-
ror configuration β = −β0 < 0, Û = −β0 Z0 < 0.
Since the object was perceived as rotating opposite to
the veridical direction, we further have: β̂ > 0. Thus it
holds that βe < −β0 < 0. According to the results in
section 3.3, when the relative translation is perceived
as opposite to the veridical motion such that λ1 < 0,
the depth order relationship of any two depths Z1 and
Z2 would depend on the signs of the perceived depths
Ẑ1 and Ẑ2. We can determine the sign of Ẑ1 and Ẑ2 as
follows. When the rotating cylinder illusion took place,
the subject often reported a perceived rotation which
had roughly the same speed as the veridical one, that
is β̂ = β0 and Û = −β0 Z0. With all depths under
view greater than Z0

2 under the experimental config-
uration, we immediately obtain the distortion factor

1
(−1+λ2 Z ) > 0 for all the perceived depths. This means
that all depths are perceived as positive and thus all
depth orders are reversed; it follows that convex object
is perceived as concave and vice versa. Since the er-
roneous 3-D motion at the opposite minimum would
be perceived with equal likelihood as the accurate 3-D
motion under pure lateral motion, it also explains why
the illusion was reported to occur only intermittently.

4. Role of Noise on 3-D Motion Estimation

In practice, optical flow is always estimated with some
noise. We express the noise-corrupted flow ˘̇p as:

˘̇p = ṗ + ṗn

= (u + un, v + vn, 0)T (30)

where ṗn is the flow component caused by noise. If we
replace ṗ by ˘̇p in Eq. (13), Eq. (14) still holds, that is, the
reprojected flow difference along the n direction is still
zero. It follows that the noise-corrupted cost function,
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denoted as JRn , can be obtained as follows:

JRn = JR + 2
∑ (

(x−x̂0,y−ŷ0)·(vrote − y0e
Z ,

x0e
Z −urote )

(x−x̂0,y−ŷ0)·n
× (x−x̂0,y−ŷ0)·(−vn ,un )

(x−x̂0,y−ŷ0)·n

)

+
∑ (

(x − x̂0, y − ŷ0) · (−vn, un)

(x − x̂0, y − ŷ0) · n

)2

(31)

JRn consists of three terms. The first term is that of
the noise-free case. The second term can be positive
or negative, whereas the last term is always zero or
positive. These are the most that can be said about
the effect of noise without further introducing assump-
tions about the noise. Next, we investigate the behavior
of SFM algorithms under the effects of specific noise
types.

4.1. Isotropic Noise Model

Isotropic noise model has been frequently used
for noise analysis in the computer vision commu-
nity. The isotropic noise is defined as an indepen-
dent Gaussian noise with identical covariance matrix
K = diag{σ 2, σ 2, 0}. Under this noise model, the ef-
fect of noise on the periphery of the search space are
small. Referring to the expression ( (x−x̂0,y−ŷ0)·(−vn ,un )

(x−x̂0,y−ŷ0)·n )
contained in both the second and the third terms of
Eq. (31), it is basically a projection of the random
noise on the vectors (x − x̂0, y − ŷ0) which are approx-
imately constant in the periphery of the search space.
The net effect of noise in the periphery is therefore
rather benign as shown in Fig. 10 where an isotropic
noise with a standard deviation fixed at 50% of the av-
erage flow speed (SN R = 7.08dB) has been added to
each component of the flow vector. The same noise has

Figure 10. Residual error images for flow fields with isotropic noise. Number of feature points were 200 for (a) and (b) and 2000 for (c).
v = (0, 0, 2) for (a) and v = (1, 1, 1) for both (b) and (c).

a “stronger” and more complex effect on the topology
of the residual in the center of the image. This effect is
especially obvious when the features are sparse, which
can be seen by comparing Fig. 10(b) with Fig. 10(c).

Some researchers demonstrated the robustness of
their algorithms by conducting experiments using
dense flow field with isotropic noise. However such
noise model is often unrealistic. We show in the next
section what happens when the noise model is non-
isotropic.

4.2. Anisotropic Noise Model

A simple anisotropic noise model is one where the
noise added to each flow depends on the flow it-
self. Specifically, for each noiseless flow we add a
noise whose horizontal and vertical components are
Gaussian with standard deviations proportional to the
horizontal and vertical components of the noiseless
flow respectively. With this model, the noise tends to
point towards the same direction as the noiseless flow.
Such a model receives partial theoretical support from
(Fermüller et al., 2001) in which a more complicated
model was presented compared to the one adopted
here.

The effect of noise under this model shows a strong
directional anisotropy; this is especially so for the case
where the noiseless flow field itself is also predominant
in certain direction. Let us denote this direction as nn .
This effect of such anisotropy is most significant at the
periphery of the plots where the FOE estimates are far
away from image center and have (x − x̂0, y − ŷ0) ap-
proximately pointing in the same direction. When this
direction is parallel to nn , the contribution of the third
term in Eq. (31) would be small, and vice versa. The
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Figure 11. Residual error images for the flow fields with anisotropic noise. Numbers of feature points were 200 for (a), 2000 for (b) and
v = (1, 1, 1) for (a) and (b). For (c), number of feature points was 800, and v = (0, 0, 2). w = (0, 0.0005, 0.001) and noise level was 50% for
all the images.

effect of the second term in Eq. (31) is also strongly
direction-dependent, although the dependence is more
complex. Suffice it to say that the resultant residual
error images have their local minima being pulled to-
wards the nn direction and the periphery of the plots.
This is illustrated in Fig. 11.

It can be seen from Fig. 11 that the influence of a 50%
anisotropic noise is quite significant. For the case of
v = (1, 1, 1) and w = (0, 0.0005, 0.001) under the
scene in view (Fig. 11(a) and (b)), the noise was bi-
ased towards the direction nn = (0.82, 0.56). We can
see that the bas-relief valley was “pulled” towards the
nn direction. This effect persisted as we increased the
number of feature points, as shown in Fig. 11(b). For
the case of forward motion (Fig. 11(c)), the value of nn

is (0.77, 0.64). We can see a clear minima strip formed
outside the image plane with the global minimum per-
turbed to (90, −28).

The implication of the above is that while true ro-
tation parameters do not explicitly appear in the ex-
pression of JRn , their values can influence the per-
formance of SFM algorithms by indirectly affecting
the distribution of noise. For instance, a strong ro-
tation around the Y -axis would result in a strong
horizontal flow, which will pull the bas-relief valley
towards the horizontal direction due to the aforemen-
tioned anisotropic noise. Such phenomenon is often
observed in practice, the result being that the FOE can-
not be reliably estimated when the rotation is domi-
nant. Figure 12 shows the influence of the true rotation
on the residual error images under anisotropic noise
model.

In real images, features found in one surface patch
may have different optical flows from those in an-

Figure 12. Influence of true rotation. Translational parameters were
(1, 1, 1) for both (a) and (b). Rotational parameters were (0, 0, 0)
for (a) and (0, 0.001, 0) for (b). Noise level is 50% for all the
images.

other surface patch. According to our anisotropic noise
model, the average noise directions in these two patches
would also be different. If we were to perform SFM sep-
arately from these two patches, we would expect the
minima strip to be pulled along different directions;
however, the region around the true solution would be
less affected. This was illustrated in Fig. 13(a) and (b).
One can capitalize on this characteristic, say, by per-
forming a simple thresholding on the residual values of
Fig. 13(a) and (b) and intersecting the resulting binary
maps. The result was illustrated in Fig. 13(c), where the
centroid of the “common area” was at (−12, 0), closer
to the true FOE estimate than the global minimum ob-
tained by using all the feature points in the image simul-
taneously. This observation can be used to formulate a
plausible strategy to improve motion estimation; its fea-
sibility will be further tested on real images in the next
section.
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Figure 13. Residual error images using feature points from different patches. All the parameters were the same as Fig. 11(c) except in the way
we utilized the feature points. The feature points used in (a) and (b) were those found in the top-left and the top-right quarter of the image plane
respectively. Figure (c) was the binary image obtained by intersecting the thresholded versions of (a) and (b).

4.3. Experiments on Real Images

The aim of this section is to carry out experiments
on real images so as to verify the various predictions
made, and to study the feasibility of a better algorithm
based on the knowledge of the topology of the error
surfaces.

Three familiar real image sequences were used. The
parameters of these sequences are listed in Table 1.
Among them, only the COKE sequence is genuinely
“real”, while the other two are computer generated se-
quences. The YosemiteNoCloud sequence is the well-
known Yosemite sequence minus the cloud in the
top portion of the images, whereas the SOFA12 se-
quence describes a simple indoor scene with con-
stant lateral translation and quite significant rota-
tional components. The optical flow was obtained
using Lucas’s method (Lucas, 1984) with a tempo-
ral window of 15 frames. Relatively dense optical
flow fields (around 3000 feature points for each se-
quence) were obtained. Again, the estimated epipolar
direction was adopted as the direction for depth re-
construction.

The residual error images were shown in Fig. 14,
from which several observations can be made.

Table 1. The parameters of three real image sequences.

Image size f Translation Rotation

COKE 300 × 300 439.4 (x0, y0) = (−25, 25) (0.0006, 0.0006, 0.004)

YosemiteNoCloud 252 × 316 337.5 (x0, y0) = (0, 59) (0.0002, 0.0016, −0.0002)

SOFA1 256 × 256 309.0 (U, V, W ) = (0.814, 0.581, 0) (−0.0203, 0.0284, 0)

• Figure 14(c) shows local minima strips along the av-
erage optical flow direction, especially outside the
image plane. This might be due to the effect of
anisotropic noise as discussed above. As for the case
of lateral motion in SOFA1, the anisotropic noise
also influences the direction of the bas-relief valley.
As can be seen in Fig. 14(i), the bas-relief valley
was pulled towards the average optical flow direc-
tion, which was roughly horizontal.

• The effect of the clustered feature points was ob-
vious for each case. Specifically, prominent edges
on the image resulted in a clustered feature distri-
bution, as in the case of YosemiteNoCloud. Local
minima were formed along the edge, as shown in
Fig. 14(f).

• Rotation estimates. While the numerical values of the
simulation data with synthetic images in Section 3.5
showed that under all configurations except the pla-
nar case, γ was invariably estimated with high ac-
curacy for all the FOE candidates, this was not the
case for real images. As far as αe and βe were con-
cerned, the numerical values also showed that the
corresponding RDir and RMag constraints were sig-
nificantly modified, possibly due to the presence of
non-isotropic noise.
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Figure 14. Residual error images for real image sequences. Each row corresponds to one image sequence. From top to bottom: COKE,
YosemiteNoCloud and SOFA1. For each row, an actual image of the sequence, the optical flow field and the residual error image are shown
from left to right. True FOEs and global minima of the residual error surfaces were highlighted by “+” and “×” on the residual error images
respectively.

Figure 15 demonstrates how we can make use of
the knowledge of the topology to design a better al-
gorithm. In the case of anisotropic noise, instead of
using all the features simultaneously in an image, we
performed SFM separately, each time using features
found in different patches. The average optical flows
found in different patches will be usually pointing to
different directions. The resultant residual error images
would thus be pulled differently according to the aver-
age flow directions. By combining the separate resid-
ual error images, one can obtain a better and more ro-

bust FOE estimate. Figure 15(c) was the binary image
obtained by performing an intersection of the thresh-
olded version of Fig. 15(a) and (b) (the residual er-
ror images resulting from using different patches). It
can be seen that the uncertainty area of the FOE esti-
mate has been much reduced, thereby illustrating the
feasibility of the idea. Better strategy for combining
the estimation results from different patches can be
devised so that factors such as feature number and
flow configuration in each patch can be taken into
account.
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Figure 15. Residual error images resulting from using features in different regions in the COKE image. Figure (a) was obtained by using
features from the bottom-left and (b) from the bottom-right quarter of the image plane respectively. Figure 15(c) was the binary image obtained
by performing an intersection of the thresholded version of (a) and (b).

5. Conclusions and Future Directions

Understanding the inherent motion ambiguities is crit-
ical for addressing the SFM problem. To this end, we
have developed a geometrically motivated motion error
analysis method which is capable of depicting the topo-
logical structures of the various optimization cost func-
tions. The motion error configurations likely to cause
ambiguities were made clear, under noiseless and noisy
conditions and under different motion types. Other con-
ditions that may affect the location of the ambiguities
such as feature distribution and density were also con-
sidered. This in turn was followed by an analysis of the
depth distortion caused by these motion ambiguities
using the iso-distortion framework. The analysis shed
light on a well-known human perceptual illusion—the
rotating cylinder illusion. Experiments on both syn-
thetic and real image sequences were carried out. Re-
sults obtained on real image sequences seemed to con-
firm the anisotropic noise model. Results also showed
that factors such as sparseness of features, coupled with
anisotropic noise distribution, may have great impact
on the residual error distribution.

This work represents part of the ongoing study to-
wards fully understanding the behavior of SFM algo-
rithms. More work needs to be done to extend our
understanding in areas such as uncalibrated motion
ambiguities. Though we focus on the calibrated case
throughout the paper, our approach can be readily
adopted to analyzing the behavior of SFM algorithms
under uncalibrated case. More details and some prelim-
inary results can be found in Xiang (2001). Some par-
tial analyses with a view towards such understanding
has been carried out in Cheong and Peh (2000) using

the depth-is-positive constraint. Similarly, the preced-
ing depth distortion analysis should lead to the more
important question of what can be done with such dis-
torted depth. Finally, by understanding how the topol-
ogy changes, it opens up the possibility of a more ro-
bust algorithm. The important conclusion of this work
is that the SFM algorithms assume different behaviors
under different motion-scene configurations, corrobo-
rating the view that current SFM algorithms can per-
form well only in restricted domains (Oliensis, 2000a).
It follows that if we can characterize and identify the
different behaviors and domains, it then becomes pos-
sible to propose better algorithms or to fuse the results
of several existing algorithms.

Notes

1. LLSR direction refers to n = [ṗ]2− ˆṗrot

‖[ṗ]2− ˆṗrot‖ . Depth recovered along
this direction is the standard linear least square estimate of depth
from Eq. (2), which minimizes the “estimated measurement er-
ror” ‖ ˆṗtr − Ẑ ([ṗ]2 − ˆṗrot)‖. Details of the properties of this
depth reconstruction scheme can be found in Cheong and Xiang
(2001).

2. courtesy of the Computer Vision Group, Heriot-Watt University
(http://www.cee.hw.ac.uk/∼mtc/sofa).
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